3,779 research outputs found
Rational Decision-Making in Problem-Solving Negotiation: Compromise, Interest-Valuation, and Cognitive Error
Embedded density functional theory for covalently bonded and strongly interacting subsystems
Embedded density functional theory (e-DFT) is used to describe the electronic structure of strongly interacting molecular subsystems. We present a general implementation of the Exact Embedding (EE) method [J. Chem. Phys. 133, 084103 (2010)] to calculate the large contributions of the nonadditive kinetic potential (NAKP) in such applications. Potential energy curves are computed for the dissociation of Li^+–Be, CH_3–CF_3, and hydrogen-bonded water clusters, and e-DFT results obtained using the EE method are compared with those obtained using approximate kinetic energy functionals. In all cases, the EE method preserves excellent agreement with reference Kohn–Sham calculations, whereas the approximate functionals lead to qualitative failures in the calculated energies and equilibrium structures. We also demonstrate an accurate pairwise approximation to the NAKP that allows for efficient parallelization of the EE method in large systems; benchmark calculations on molecular crystals reveal ideal, size-independent scaling of wall-clock time with increasing system size
Exact nonadditive kinetic potentials for embedded density functional theory
We describe an embedded density functional theory (DFT) protocol in which the nonadditive kinetic energy component of the embedding potential is treated exactly. At each iteration of the Kohn–Sham equations for constrained electron density, the Zhao–Morrison–Parr constrained search method for constructing Kohn–Sham orbitals is combined with the King-Handy expression for the exact kinetic potential. We use this formally exact embedding protocol to calculate ionization energies for a series of three- and four-electron atomic systems, and the results are compared to embedded DFT calculations that utilize the Thomas–Fermi (TF) and the Thomas–Fermi–von Weisacker approximations to the kinetic energy functional. These calculations illustrate the expected breakdown due to the TF approximation for the nonadditive kinetic potential, with errors of 30%–80% in the calculated ionization energies; by contrast, the exact protocol is found to be accurate and stable. To significantly improve the convergence of the new protocol, we introduce a density-based switching function to map between the exact nonadditive kinetic potential and the TF approximation in the region of the nuclear cusp, and we demonstrate that this approximation has little effect on the accuracy of the calculated ionization energies. Finally, we describe possible extensions of the exact protocol to perform accurate embedded DFT calculations in large systems with strongly overlapping subsystem densities
Fabrication of a Self-Assembled and Flexible SERS Nanosensor for Explosive Detection at Parts-Per-Quadrillion Levels from Fingerprints
Apart from high sensitivity and selectivity of surface-enhanced Raman scattering (SERS)-based trace explosive detection, efficient sampling of explosive residue from real world surfaces is very important for homeland security applications. Herein, we demonstrate an entirely new SERS nanosensor fabrication approach. The SERS nanosensor was prepared by self-assembling chemically synthesized gold triangular nanoprisms (Au TNPs), which we show display strong electromagnetic field enhancements at the sharp tips and edges, onto a pressure-sensitive flexible adhesive film. Our SERS nanosensor provides excellent SERS activity (enhancement factor = ∼6.0 × 106) and limit of detection (as low as 56 parts-per-quadrillions) with high selectivity by chemometric analyses among three commonly military high explosives (TNT, RDX, and PETN). Furthermore, the SERS nanosensors present excellent reproducibility (<4.0% relative standard deviation at 1.0 μM concentration) and unprecedentedly high stability with a “shelf life” of at least 5 months. Finally, TNT and PETN were analyzed and quantified by transferring solid explosive residues from fingerprints left on solid surfaces to the SERS nanosensor. Taken together, the demonstrated sensitivity, selectivity, and reliability of the measurements as well as with the excellent shelf life of our SERS nanosensors obviate the need for complicated sample processing steps required for other analytical techniques, and thus these nanosensors have tremendous potential not only in the field of measurement science but also for homeland security applications to combat acts of terror and military threats
Density functional theory embedding for correlated wavefunctions: Improved methods for open-shell systems and transition metal complexes
Density functional theory (DFT) embedding provides a formally exact framework
for interfacing correlated wave-function theory (WFT) methods with lower-level
descriptions of electronic structure. Here, we report techniques to improve the
accuracy and stability of WFT-in-DFT embedding calculations. In particular, we
develop spin-dependent embedding potentials in both restricted and unrestricted
orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and
we develop an orbital-occupation-freezing technique to improve the convergence
of optimized effective potential (OEP) calculations that arise in the
evaluation of the embedding potential. The new techniques are demonstrated in
applications to the van-der-Waals-bound ethylene-propylene dimer and to the
hexaaquairon(II) transition-metal cation. Calculation of the dissociation curve
for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces
full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating
errors in the dispersion interactions due to conventional exchange-correlation
(XC) functionals while simultaneously avoiding errors due to subsystem
partitioning across covalent bonds. Application of WFT-in-DFT embedding to the
calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II)
cation reveals that the majority of the dependence on the DFT XC functional can
be eliminated by treating only the single transition-metal atom at the WFT
level; furthermore, these calculations demonstrate the substantial effects of
open-shell contributions to the embedding potential, and they suggest that
restricted open-shell WFT-in-DFT embedding provides better accuracy than
unrestricted open-shell WFT-in-DFT embedding due to the removal of spin
contamination.Comment: 11 pages, 5 figures, 2 table
Lower thigh subcutaneous and higher visceral abdominal adipose tissue content both contribute to insulin resistance.
It is well known that visceral adipose tissue (VAT) is associated with insulin resistance (IR). Considerable debate remains concerning the potential positive effect of thigh subcutaneous adipose tissue (TSAT). Our objective was to observe whether VAT and TSAT are opposite, synergistic or additive for both peripheral and hepatic IR. Fifty-two volunteers (21 male/31 female) between 30 and 75 years old were recruited from the general population. All subjects were sedentary overweight or obese (mean BMI 33.0 ± 3.4 kg/m(2)). Insulin sensitivity was determined by a 4-h hyperinsulinemic-euglycemic clamp with stable isotope tracer dilution. Total body fat and lean body mass were determined by dual X-ray absorptiometry. Abdominal and mid-thigh adiposity was determined by computed tomography. VAT was negatively associated with peripheral insulin sensitivity, while TSAT, in contrast, was positively associated with peripheral insulin sensitivity. Subjects with a combination of low VAT and high TSAT had the highest insulin sensitivity, subjects with a combination of high VAT and low TSAT were the most insulin resistant. These associations remained significant after adjusting for age and gender. These data confirm that visceral excess abdominal adiposity is associated with IR across a range of middle-age to older men and women, and further suggest that higher thigh subcutaneous fat is favorably associated with better insulin sensitivity. This strongly suggests that these two distinct fat distribution phenotypes should both be considered in IR as important determinants of cardiometabolic risk
Communication System For Firefighters
Currently firefighters use two-way radios to communicate on the job, and they are forced to write reports based on their memory because there is not an easy way to record the communications between two-way radios. Firefighters need a system to automatically document what happened while they were responding to a call. To save them a significant amount of time when creating reports, our solution is to implement an application that allows firefighters to take pictures, record video and communicate in real time with their team of on-site responders. The proposed system will use a Wireless Local Area Network (WLAN) hosted on the fire truck itself to act as an access point (AP) to which the firefighters can connect. This AP will also save communication between firefighters to a local storage location. Upon return to the fire station, the AP will route all of the information stored locally to a larger database. For now, Wi-Fi will be our communication medium, with a prediction that our technology can eventually be extended to include radio signal
Notes on Ohioan Mammals
Author Institution: 6559 Salem Pike, Cincinnati, Ohio ; Museum of Natural History, University of Illinois, Urban
Mapping smokeless powder residue on PVC pipe bomb fragments using total vaporization solid phase microextraction
Quantitating post-blast explosive residue is not a common practice in crime labs as it is typically not legally relevant. There is value in quantitation, however, if the distribution of residues on Improvised Explosive Devices (IEDs) can help guide future sample collection and/or method development. Total vaporization solid phase microextraction gas chromatography mass spectrometry (TV-SPME/GC/MS) was used to quantify residues of double-base smokeless powder (DBSP), which includes nitroglycerin (NG), diphenylamine (DPA), and ethyl centralite (EC) on post-blast PVC pipe bomb fragments. The analytical method could separate the three constituents in under 5 min with a detection limit under 1 ppb, which demonstrates high throughput while maintaining high sensitivity. The method was optimized for nitroglycerin, as it is the most indicative of DBSP. The average mass of nitroglycerin recovered from an entire PVC device was 1.0 mg. The average mass of diphenylamine recovered was much lower (24 μg) and only one device had detectable levels of EC. The typical concentration of NG on any given fragment was approximately 15–30 ppm (μg NG/g fragment). However, there was no correlation between the mass of a fragment and the mass of residue upon it. Instead, the residue was distributed such that the highest concentration of residues was found on end cap fragments
- …
