883 research outputs found
Spin-lattice instability to a fractional magnetization state in the spinel HgCr2O4
Magnetic systems are fertile ground for the emergence of exotic states when
the magnetic interactions cannot be satisfied simultaneously due to the
topology of the lattice - a situation known as geometrical frustration.
Spinels, AB2O4, can realize the most highly frustrated network of
corner-sharing tetrahedra. Several novel states have been discovered in
spinels, such as composite spin clusters and novel charge-ordered states. Here
we use neutron and synchrotron X-ray scattering to characterize the fractional
magnetization state of HgCr2O4 under an external magnetic field, H. When the
field is applied in its Neel ground state, a phase transition occurs at H ~ 10
Tesla at which each tetrahedron changes from a canted Neel state to a
fractional spin state with the total spin, Stet, of S/2 and the lattice
undergoes orthorhombic to cubic symmetry change. Our results provide the
microscopic one-to-one correspondence between the spin state and the lattice
distortion
Magnetic domain tuning and the emergence of bubble domains in the bilayer manganite La 2−2x Sr 1+2x Mn 2 O 7 (x=0.32)
We report a magnetic force microscopy study of the magnetic domain evolution in the layered manganite La2-2x Sr1+2x Mn2O7 (with x = 0.32). This strongly correlated electron compound is known to exhibit a wide range of magnetic phases, including a recently uncovered biskyrmion phase. We observe a continuous transition from dendritic to stripelike domains, followed by the formation of magnetic bubbles due to a field-and temperaturedependent competition between in-plane and out-of-plane spin alignments. The magnetic bubble phase appears at comparable field and temperature ranges as the biskyrmion phase, suggesting a close relation between both phases. Based on our real-space images we construct a temperature-field phase diagram for this composition.open115Ysciescopu
Efimov effect in quantum magnets
Physics is said to be universal when it emerges regardless of the underlying
microscopic details. A prominent example is the Efimov effect, which predicts
the emergence of an infinite tower of three-body bound states obeying discrete
scale invariance when the particles interact resonantly. Because of its
universality and peculiarity, the Efimov effect has been the subject of
extensive research in chemical, atomic, nuclear and particle physics for
decades. Here we employ an anisotropic Heisenberg model to show that collective
excitations in quantum magnets (magnons) also exhibit the Efimov effect. We
locate anisotropy-induced two-magnon resonances, compute binding energies of
three magnons and find that they fit into the universal scaling law. We propose
several approaches to experimentally realize the Efimov effect in quantum
magnets, where the emergent Efimov states of magnons can be observed with
commonly used spectroscopic measurements. Our study thus opens up new avenues
for universal few-body physics in condensed matter systems.Comment: 7 pages, 5 figures; published versio
Bilayer manganites: polarons in the midst of a metallic breakdown
The exact nature of the low temperature electronic phase of the manganite
materials family, and hence the origin of their colossal magnetoresistant (CMR)
effect, is still under heavy debate. By combining new photoemission and
tunneling data, we show that in La{2-2x}Sr{1+2x}Mn2O7 the polaronic degrees of
freedom win out across the CMR region of the phase diagram. This means that the
generic ground state is that of a system in which strong electron-lattice
interactions result in vanishing coherent quasi-particle spectral weight at the
Fermi level for all locations in k-space. The incoherence of the charge
carriers offers a unifying explanation for the anomalous charge-carrier
dynamics seen in transport, optics and electron spectroscopic data. The
stacking number N is the key factor for true metallic behavior, as an
intergrowth-driven breakdown of the polaronic domination to give a metal
possessing a traditional Fermi surface is seen in the bilayer system.Comment: 7 pages, 2 figures, includes supplementary informatio
Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement
Lithium-excess 3d-transition-metal layered oxides (Li1+xNiyCozMn1-x-y-zO2, > 250 mAh g(-1)) suffer from severe voltage decay upon cycling, which decreases energy density and hinders further research and development. Nevertheless, the lack of understanding on chemical and structural uniqueness of the material prevents the interpretation of internal degradation chemistry. Here, we discover a fundamental reason of the voltage decay phenomenon by comparing ordered and cation-disordered materials with a combination of X-ray absorption spectroscopy and transmission electron microscopy studies. The cation arrangement determines the transition metal-oxygen covalency and structural reversibility related to voltage decay. The identification of structural arrangement with de-lithiated oxygen-centred octahedron and interactions between octahedrons affecting the oxygen stability and transition metal mobility of layered oxide provides the insight into the degradation chemistry of cathode materials and a way to develop high-energy density electrodes
Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a ,25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.open1
Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.open
Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study
First-principles calculations are performed to identify the pristine and Si doped 3D metallic T6 carbon structure (having both sp(2) and sp(3) type hybridization) as a new carbon based anode material. The pi electron of C-2 atoms (sp2 bonded) forms an out of plane network that helps to capture the Li atom. The highest Li storage capacity of Si doped T6 structure with conformation Li1.7Si1C5 produces theoretical specific capacity of 632 mAh/g which substantially exceeding than graphite. Also, open-circuit voltage (OCV) with respect to Li metal shows large negative when compared to the pristine T6 structure. This indicates modifications in terms of chemical properties are required in anode materials for practical application. Among various doped (Si, Ge, Sn, B, N) configuration, Si doped T6 structure provides a stable positive OCV for high Li concentrations. Likewise, volume expansion study also shows Si doped T6 structure is more stable with less pulverization and substantial capacity losses in comparison with graphite and silicon as an anode materials. Overall, mixed hybridized (sp(2) + sp(3)) Si doped T6 structure can become a superior anode material than present sp2 hybridized graphite and sp(3) hybridized Si structure for modern Lithium ion batteries.ope
Li2SnO3 as a Cathode Material for Lithium-ion Batteries:Defects, Lithium Ion Diffusion and Dopants
Tin-based oxide Li2SnO3 has attracted considerable interest as a promising cathode material for potential use in rechargeable lithium batteries due to its high- capacity. Static atomistic scale simulations are employed to provide insights into the defect chemistry, doping behaviour and lithium diffusion paths in Li2SnO3. The most favourable intrinsic defect type is Li Frenkel (0.75 eV/defect). The formation of anti-site defect, in which Li and Sn ions exchange their positions is 0.78 eV/defect, very close to the Li Frenkel. The present calculations confirm the cation intermixing found experimentally in Li2SnO3. Long range lithium diffusion paths via vacancy mechanisms were examined and it is confirmed that the lowest activation energy migration path is along the c-axis plane with the overall activation energy of 0.61 eV. Subvalent doping by Al on the Sn site is energetically favourable and is proposed to be an efficient way to increase the Li content in Li2SnO3. The electronic structure calculations show that the introduction of Al will not introduce levels in the band gap
Recommended from our members
Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts
In 2010, when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels
- …
