3,239 research outputs found

    What makes a 'good group'? Exploring the characteristics and performance of undergraduate student groups

    Get PDF
    Group work forms the foundation for much of student learning within higher education, and has many educational, social and professional benefits. This study aimed to explore the determinants of success or failure for undergraduate student teams and to define a ‘good group’ through considering three aspects of group success: the task, the individuals, and the team. We employed a mixed methodology, combining demographic data with qualitative observations and task and peer evaluation scores. We determined associations between group dynamic and behaviour, demographic composition, member personalities and attitudes towards one another, and task success. We also employed a cluster analysis to create a model outlining the attributes of a good small group learning team in veterinary education. This model highlights that student groups differ in measures of their effectiveness as teams, independent of their task performance. On the basis of this, we suggest that groups who achieve high marks in tasks cannot be assumed to have acquired team working skills, and therefore if these are important as a learning outcome, they must be assessed directly alongside the task output

    The invention of the vertical camera in photography

    Get PDF
    n/

    Receipt from Thomas Goode & Co. to Mrs. Robert Goelet

    Get PDF
    https://digitalcommons.salve.edu/goelet-personal-expenses/1325/thumbnail.jp

    A Phase Space Approach to Gravitational Enropy

    Get PDF
    We examine the definition S = ln Omega as a candidate "gravitational entropy" function. We calculate its behavior for gravitationl and density perturbations in closed, open and flat cosmologies and find that in all cases it increases monotonically. Using the formalism to calculate the gravitational entropy produced during inflation gives the canonical answer. We compare the behavior of S with the behavior of the square of the Weyl tensor. Applying the formalism to black holes has proven more problematical.Comment: Talk delivered at South African Relativistic Cosmology Symposium, Feb 1999. Some new results over Rothman and Anninos 97. To appear in GRG, 17 page

    Measures of gravitational entropy I. Self-similar spacetimes

    Full text link
    We examine the possibility that the gravitational contribution to the entropy of a system can be identified with some measure of the Weyl curvature. In this paper we consider homothetically self-similar spacetimes. These are believed to play an important role in describing the asymptotic properties of more general models. By exploiting their symmetry properties we are able to impose significant restrictions on measures of the Weyl curvature which could reflect the gravitational entropy of a system. In particular, we are able to show, by way of a more general relation, that the most widely used "dimensionless" scalar is \textit{not} a candidate for this measure along homothetic trajectories.Comment: revtex, minor clarifications, to appear in Physical Review

    Properties of Umbral Dots as Measured from the New Solar Telescope Data and MHD Simulations

    Full text link
    We studied bright umbral dots (UDs) detected in a moderate size sunspot and compared their statistical properties to recent MHD models. The study is based on high resolution data recorded by the New Solar Telescope at the Big Bear Solar Observatory and 3D MHD simulations of sunspots. Observed UDs, living longer than 150 s, were detected and tracked in a 46 min long data set, using an automatic detection code. Total 1553 (620) UDs were detected in the photospheric (low chromospheric) data. Our main findings are: i) none of the analyzed UDs is precisely circular, ii) the diameter-intensity relationship only holds in bright umbral areas, and iii) UD velocities are inversely related to their lifetime. While nearly all photospheric UDs can be identified in the low chromospheric images, some small closely spaced UDs appear in the low chromosphere as a single cluster. Slow moving and long living UDs seem to exist in both the low chromosphere and photosphere, while fast moving and short living UDs are mainly detected in the photospheric images. Comparison to the 3D MHD simulations showed that both types of UDs display, on average, very similar statistical characteristics. However, i) the average number of observed UDs per unit area is smaller than that of the model UDs, and ii) on average, the diameter of model UDs is slightly larger than that of observed ones.Comment: Accepted by the AP
    • …
    corecore