17 research outputs found

    Removal of yield-stress fluids from pipework using water

    Get PDF
    The emptying of product from process plant is a significant multiphase flow problem in food and personal care industries, controlling both product recovery, and cleaning time. Product and operational losses can be significant, especially with viscous products. It is necessary to maximize product recovery while minimizing cleaning time and effluent volume. The removal of a range of products from fully filled pipework using water has been characterized and monitored by weighing pipes at intervals and by inline turbidity probe. Data is presented for a range of products (toothpaste, hand cream, apple sauce, yoghurt, and shower gel) that have been cleaned from two pipe systems. The data can be fitted by a linear relationship between a dimensionless cleaning time, and the ratio of the product yield stress to the surface shear stress. The effect of pipe fittings is to reduce cleaning times, reflecting increased shear/energy dissipation in the pipe. (C) 2018 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical EngineersTurkish Ministry of EducationTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK); ZEAL project [TP//ZEE/6/1/21191]; RCUK National Centre for Sustainable Energy Use in Food Chains [EP/K011820/1]IP acknowledges financial support from the Turkish Ministry of Education. This paper reports results from the ZEAL project (grant no. TP//ZEE/6/1/21191). The authors would also like to acknowledge the funding received from the RCUK National Centre for Sustainable Energy Use in Food Chains (grant no. EP/K011820/1)

    Growth kinetics and modelling of S. cerevisiae (NCYC 431) during de-lignified waste banana fermentation and chemical characterization

    Get PDF
    S. cerevisiae (NCYC 431) growth kinetics was studied using mathematical models in order to ascertain the optimum operational parameters for banana waste fermentation. Chapman-Richards model was used to describe yeast growth kinetics under varying pH and temperatures and the results were compared to Bergter and Andrew models. Alkaline-delignification of the wastes was done to solubilize lignin prior fermentation. This is because lignin is a complex organic plant compound that has been reported not to be degraded easily by many microorganisms. From the results temperatures 22–28 °C and pH 4.5–5.6 were noted as optimum for yeast growth on delignified waste bananas (DWB). Chapman model results were close to Bergter and Andrew models with very low RMSE. Delignification was noted to aid yeast growth with higher microbial populations (log10 cfu/g) registered with DWB samples as compared to non-delignified waste bananas (NDWB). Also, chemical characterization of the DWB and NDWB indicated higher proteins and lipids in the former than the latter by 3 and 4% respectively. This suggested the possible use of the upgraded wastes as chicken feed supplements. Higher minerals in DWB of 8.6% also suggested the possible use of the waste as a nutrient-rich fertilizer

    Characterising the cleaning behaviour of brewery foulants - to minimise the cost of cleaning in place operations.

    Get PDF
    Industry operations require a clean plant to make safe, quality products consistently. As well as product quality, the environmental impact of processes has become increasingly important to industry and consumers. Cleaning In Place (CIP) is the ubiquitous method used to ensure plant cleanliness and hygiene. It is therefore vital the system is optimal and efficient. I.e. the correct cleaning agent is delivered to the fouled surface at the right time, temperature, flow rate and concentration. This cannot be assured without effective online measurement technologies. Fryer and Asteriadou (2009) describe how the nature of a fouling deposit can be related to the cost of cleaning. The evolution of three key deposit types has also enabled current fouling and cleaning literature to be easily classified. In the brewery there are many types of soil that need to be cleaned of which the cost of cleaning was unknown. The cost of fermenter CIP in one brewery was found to be £106 k per year. Effective fouling methods for yeast and caramel; and the relationship between flow, temperature, and caustic concentration in the removal of yeast and caramel soils seen in industry has been done. This work has helped determine effective cleaning methods for these soils from stainless steel coupons and pipes. Fermentation vessels have been found by Goode et al., (2010) to have two types of soil: A – fouling above the beer resulting from the act of fermentation, and B – fouling below the beer resulting from emptying the fermenter. The type B fouling below the beer was found to be a type 1 soil that could be removed with water. An increase in flow velocity and Reynolds number decreased cleaning time. An increase in temperature did not decrease cleaning time significantly at higher flow velocities, 0.5 m s-1. Fouling above the beer occurs when material is transported to and stick on to the wall during fermentation foaming. This happens initially and as a result the fouling has a long aging time. This yeast film represents a type 2 deposit, removed in part by water and in part by chemical. Most of the deposit could be removed by rinsing with warm water. At 50°C the greatest amount of deposit was removed in the shortest time. A visually clean surface could be achieved at all temperatures, 20, 30, 50 and 70°C, using both 2 and 0.2 wt % Advantis 210 (1 and 0.1 wt % NaOH respectively). A visually clean surface was achieved quicker at higher detergent temperatures rather than rinsing at higher flow velocity or concentration. This finding suggests most deposit can be removed with warm water and cleaned with lower detergent concentrations. Currently in the brewery 2 % NaOH is used at 70°C. Caramel represents a type 3 soil. When heated it sticks to stainless steel and requires chemical action for removal. Confectionary caramel was cooked onto pipes and coupons and the effect of flow velocity, temperature and concentration on removal determined. At high flow velocity most of the deposit could be removed from the pipe using water. There was no significant difference in the mass of caramel removed by the water however. A visually clean surface was achieved by rinsing at 80°C with 2.5% Advantis. A visually clean surface could not be achieved at lower temperatures at higher concentration, 5% Advantis, or at higher flow velocity. The measurement of online conductivity and flow rate values was invaluable during each experiment. Turbidity values did indicate the removal of yeast and caramel from pipes however offline measurements were required to confirm removal. Caramel removal could be wholly quantified by mass when cleaning pipes. The integration of the turbidity values measured during each rinse correlated well with the mass of deposit removed in most cases. Coupon cleaning was wholly quantified by area . A cost saving of £69 k can be made by optimising fermenter CIP to warm pre-rinsing followed by ambient caustic circulation. An £8 k saving can be made by optimising yeast tank CIP to pre-rinsing only and acid sanitisation. Industry must ensure effective online CIP measurements are made throughout cleaning to describe the process effectively and enable optimisation. It is crucial to have cleaning measurement information to hand because that is how we ensure our customers they are buying a quality product. Also you cannot optimise what you do not measure effectively
    corecore