5 research outputs found

    The changing culture of silviculture

    Get PDF
    Changing climates are altering the structural and functional components of forest ecosystems at an unprecedented rate. Simultaneously, we are seeing a diversification of public expectations on the broader sustainable use of forest resources beyond timber production. As a result, the science and art of silviculture needs to adapt to these changing realities. In this piece, we argue that silviculturists are gradually shifting from the application of empirically derived silvicultural scenarios to new sets of approaches, methods and practices, a process that calls for broadening our conception of silviculture as a scientific discipline. We propose a holistic view of silviculture revolving around three key themes: observe, anticipate and adapt. In observe, we present how recent advances in remote sensing now enable silviculturists to observe forest structural, compositional and functional attributes in near-real-time, which in turn facilitates the deployment of efficient, targeted silvicultural measures in practice that are adapted to rapidly changing constraints. In anticipate, we highlight the importance of developing state-of-the-art models designed to take into account the effects of changing environmental conditions on forest growth and dynamics. In adapt, we discuss the need to provide spatially explicit guidance for the implementation of adaptive silvicultural actions that are efficient, cost-effective and socially acceptable. We conclude by presenting key steps towards the development of new tools and practical knowledge that will ensure meeting societal demands in rapidly changing environmental conditions. We classify these actions into three main categories: reexamining existing silvicultural trials to identify key stand attributes associated with the resistance and resilience of forests to multiple stressors, developing technological workflows and infrastructures to allow for continuous forest inventory updating frameworks, and implementing bold, innovative silvicultural trials in consultation with the relevant communities where a range of adaptive silvicultural strategies are tested. In this holistic perspective, silviculture can be defined as the science of observing forest condition and anticipating its development to apply tending and regeneration treatments adapted to a multiplicity of desired outcomes in rapidly changing realities

    Vegetation Phenology Driving Error Variation in Digital Aerial Photogrammetrically Derived Terrain Models

    No full text
    Digital aerial photogrammetry (DAP) and unmanned aerial systems (UAS) have emerged as synergistic technologies capable of enhancing forest inventory information. A known limitation of DAP technology is its ability to derive terrain surfaces in areas with moderate to high vegetation coverage. In this study, we sought to investigate the influence of flight acquisition timing on the accuracy and coverage of digital terrain models (DTM) in a low cover forest area in New Brunswick, Canada. To do so, a multi-temporal UAS-acquired DAP data set was used. Acquired imagery was photogrammetrically processed to produce high quality DAP point clouds, from which DTMs were derived. Individual DTMs were evaluated for error using an airborne laser scanning (ALS)-derived DTM as a reference. Unobstructed road areas were used to validate DAP DTM error. Generalized additive mixed models (GAMM) were generated to assess the significance of acquisition timing on mean vegetation cover, DTM error, and proportional DAP coverage. GAMM models for mean vegetation cover and DTM error were found to be significantly influenced by acquisition date. A best available terrain pixel (BATP) compositing exercise was conducted to generate a best possible UAS DAP-derived DTM and outline the importance of flight acquisition timing. The BATP DTM yielded a mean error of −0.01 m. This study helps to show that the timing of DAP acquisitions can influence the accuracy and coverage of DTMs in low cover vegetation areas. These findings provide insight to improve future data set quality and provide a means for managers to cost-effectively derive high accuracy terrain models post-management activity.Forestry, Faculty ofNon UBCReviewedFacult

    The changing culture of silviculture

    No full text
    Changing climates are altering the structural and functional components of forest ecosystems at an unprecedented rate. Simultaneously, we are seeing a diversification of public expectations on the broader sustainable use of forest resources beyond timber production. As a result, the science and art of silviculture needs to adapt to these changing realities. In this piece, we argue that silviculturists are gradually shifting from the application of empirically derived silvicultural scenarios to new sets of approaches, methods and practices, a process that calls for broadening our conception of silviculture as a scientific discipline. We propose a holistic view of silviculture revolving around three key themes: observe, anticipate and adapt. In observe, we present how recent advances in remote sensing now enable silviculturists to observe forest structural, compositional and functional attributes in near-real-time, which in turn facilitates the deployment of efficient, targeted silvicultural measures in practice that are adapted to rapidly changing constraints. In anticipate, we highlight the importance of developing state-of-the-art models designed to take into account the effects of changing environmental conditions on forest growth and dynamics. In adapt, we discuss the need to provide spatially explicit guidance for the implementation of adaptive silvicultural actions that are efficient, cost-effective and socially acceptable. We conclude by presenting key steps towards the development of new tools and practical knowledge that will ensure meeting societal demands in rapidly changing environmental conditions. We classify these actions into three main categories: re-examining existing silvicultural trials to identify key stand attributes associated with the resistance and resilience of forests to multiple stressors, developing technological workflows and infrastructures to allow for continuous forest inventory updating frameworks, and implementing bold, innovative silvicultural trials in consultation with the relevant communities where a range of adaptive silvicultural strategies are tested. In this holistic perspective, silviculture can be defined as the science of observing forest condition and anticipating its development to apply tending and regeneration treatments adapted to a multiplicity of desired outcomes in rapidly changing realities
    corecore