5,396 research outputs found

    Narrative support for young game designers’ writing

    Get PDF
    Creating narrative-based computer games is a complex and challenging task. Narrative Threads is a suite of software tools designed to aid young people (aged 11-15) in creating their own narrative-based games as a writing development activity. A participatory design process highlighted the areas where additional support was required, and informed the iterative design of Narrative Threads. The tools are implemented as a plugin to a commercial game creation toolset, and constitute character and object design tools, a branching narrative diagramming tool and an augmented story map view. In this paper, we provide an overview of the design of the tools and describe an evaluation carried out with 14 children over a four-day workshop. The study examined tool usage patterns, and compared games created with Narrative Threads to those created using the standard toolset. The results suggest a number of ways in which dynamic external representations of story elements can support writing activities in narrative-based game creation. Young designers using Narrative Threads wrote more character dialogue, made stronger links between the conversations they wrote and wider game events, and designed more complex characters, compared to those using the standard toolset. In addition to showing how Narrative Threads can support young games designers, the results have broader implications for anyone looking to support storytelling and writing through game creation activities and tools

    Analysis of web spreading induced by the curved axis roller

    Get PDF
    This paper describes the development of a model for predicting the elastic deformations and stresses in a web crossing a curved-axis roller. The Finite Element Method was used to compute web displacements, forces and stresses. A preprocessor was developed to automatically convert the web material properties and roller geometry into a FEM mesh and a set of boundary conditions. The boundary conditions which produce web spreading were developed and incorporated into the model. The principal boundary conditions in this model are derived from the assumption that there is sufficient friction between the web and the roller to prevent slipping. Because of the nonlinear nature of the traction between the web and the roller, an iterative Finite Element solution technique was used. The model was used to perform a study of the effects of variations in geometry, material properties and operating conditions on the spreading behavior of the web/roller system. The results of this study are presented.Mechanical and Aerospace Engineerin

    Analysis of web spreading induced by the concave roller

    Get PDF
    This paper describes the development of a model for predicting the elastic deformations and stresses in a web crossing a concave (or negative crown) roller. The Finite Element Method was used to compute web displacements, forces and stresses. A preprocessor was developed to automatically convert the web material properties and roller geometry into a FEM mesh and a set of boundary conditions. The boundary conditions which produce web spreading were developed and incorporated into the model. The principal boundary conditions in this model are derived from the assumption that there is sufficient friction between the web and the roller to prevent slipping. Because of the nonlinear nature of the traction between the web and the roller, an iterative Finite Element solution technique was used. The model was used to perform a study of the effects of variations in geometry, material properties and operating conditions on the spreading behavior of the web/roller system. The results of this study are presented.Mechanical and Aerospace Engineerin

    Bayes and health care research.

    Get PDF
    Bayes’ rule shows how one might rationally change one’s beliefs in the light of evidence. It is the foundation of a statistical method called Bayesianism. In health care research, Bayesianism has its advocates but the dominant statistical method is frequentism. There are at least two important philosophical differences between these methods. First, Bayesianism takes a subjectivist view of probability (i.e. that probability scores are statements of subjective belief, not objective fact) whilst frequentism takes an objectivist view. Second, Bayesianism is explicitly inductive (i.e. it shows how we may induce views about the world based on partial data from it) whereas frequentism is at least compatible with non-inductive views of scientific method, particularly the critical realism of Popper. Popper and others detail significant problems with induction. Frequentism’s apparent ability to avoid these, plus its ability to give a seemingly more scientific and objective take on probability, lies behind its philosophical appeal to health care researchers. However, there are also significant problems with frequentism, particularly its inability to assign probability scores to single events. Popper thus proposed an alternative objectivist view of probability, called propensity theory, which he allies to a theory of corroboration; but this too has significant problems, in particular, it may not successfully avoid induction. If this is so then Bayesianism might be philosophically the strongest of the statistical approaches. The article sets out a number of its philosophical and methodological attractions. Finally, it outlines a way in which critical realism and Bayesianism might work together. </p

    Spectroscopic and Photometric Analysis of HS 1136+6646: A Hot Young DAO+K7 V Post-Common-Envelope, Pre-Cataclysmic Variable Binary

    Get PDF
    Extensive photometric and spectroscopic observations have been obtained for HS 1136+6646. The observations reveal a newly formed post–common-envelope binary system containing a hot ~DAO.5 primary and a highly irradiated secondary. HS 1136+6646 is the most extreme example yet of a class of short-period hot H-rich white dwarfs with K–M companion systems such as V471 Tau and Feige 24. HS 1136+6646 is a double-line spectroscopic binary showing emission lines of H i, He ii, C ii, Ca ii, and Mg ii, due in part to irradiation of the K7 V secondary by the hot white dwarf. Echelle spectra reveal the hydrogen emission lines to be double-peaked with widths of ~200 km s-1, raising the possibility that emission from an optically thin disk may also contribute. The emission lines are observed to disappear near the inferior conjunction. An orbital period of 0:83607 ± 0:00003 days has been determined through the phasing of radial velocities, emission-line equivalent widths, and photometric measurements spanning a range of 24 months. Radial velocity measurements yield an amplitude of KWD ¼ 69 ± 2 km s-1 for the white dwarf and KK7V = 115 ± 1 km s-1 for the secondary star. In addition to orbital variations, photometric measurements have also revealed a low-amplitude modulation with a period of 113.13 minutes and a semiamplitude of 0.0093 mag. These short-period modulations are possibly associated with the rotation of the white dwarf. From fits of the Balmer line profiles, the white dwarf is estimated to have an effective temperature and gravity of ~70,000 K and log g ~ 7:75, respectively. However, this optically derived temperature is difficult to reconcile with the far-UV spectrum of the Lyman line region. Far Ultraviolet Spectroscopic Explorer spectra show the presence of O vi absorption lines and a spectral energy distribution whose slope persists nearly to the Lyman limit. The extremely high temperature of the white dwarf, from both optical and UV measurements, indicates that the binary system is one of the earliest post–common-envelope objects known, having an age around 7:7 x 105 yr. Although the spectrum of the secondary star is best represented by a K7 V star, indications are that the star may be overly luminous for its mass

    Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy

    Get PDF
    Background: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration &gt;= 5 years, cases of DN were defined as albuminuria &gt;300 mg/d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82). Methodology/Principal Findings: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously developed model for DN. Upon unblinding, the model for DN showed 93.8% sensitivity and 91.4% specificity, with an AUC of 0.948 (95% CI 0.898-0.978). Of 65 previously identified peptides, 60 were significantly different between cases and controls of this study. In &lt;10% of cases and controls classification by proteome analysis not entirely resulted in the expected clinical outcome. Analysis of patient's subsequent clinical course revealed later progression to DN in some of the false positive classified DN control patients. Conclusions: These data provide the first independent confirmation that profiling of the urinary proteome by CE-MS can adequately identify subjects with DN, supporting the generalizability of this approach. The data further establish urinary collagen fragments as biomarkers for diabetes-induced renal damage that may serve as earlier and more specific biomarkers than the currently used urinary albumin

    Illuminating interfaces between phases of a U(1) x U(1) gauge theory

    Full text link
    We study reflection and transmission of light at the interface between different phases of a U(1) x U(1) gauge theory. On each side of the interface, one can choose a basis so that one generator is free (allowing propagation of light), and the orthogonal one may be free, Higgsed, or confined. However, the basis on one side will in general be rotated relative to the basis on the other by some angle alpha. We calculate reflection and transmission coefficients for both polarizations of light and all 8 types of boundary, for arbitrary alpha. We find that an observer measuring the behavior of light beams at the boundary would be able to distinguish 4 different types of boundary, and we show how the remaining ambiguity arises from the principle of complementarity (indistinguishability of confined and Higgs phases) which leaves observables invariant under a global electric/magnetic duality transformation. We also explain the seemingly paradoxical behavior of Higgs/Higgs and confined/confined boundaries, and clarify some previous arguments that confinement must involve magnetic monopole condensation.Comment: RevTeX, 12 page
    • …
    corecore