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This paper describes the development of a model for predicting the 
elastic deformations and stresses in a web crossing a concave (or negative 
crown) roller. The Finite Element Method was used to compute web 
displacements, forces and stresses. A preprocessor was developed to 
automatically convert the web material properties and roller geometry into a 
FEM mesh and a set of boundary conditions. The boundary conditions which 
produce web spreading were developed and incorporated into the model. The 
principal boundary conditions in this model are derived from the assumption 
that there is sufficient friction between the web and the roller to prevent 
slipping. Because of the nonlinear nature of the traction between the web and 
the roller, an iterative Finite Element solution technique was used. The model 
was used to perform a study of the effects of variations in geometry, material 
properties and operating conditions on the spreading behavior of the web/roller 
system. The results of this study are presented. 

INTRODUCTION 

A web is defined as any material in continuous flexible strip form [I]. 
The flexibility of the web is derived from the fact that the material thickness is 
small compared to the length and width of the material. 

Web materials are usually delivered in the form of rolls, because of 
their compactness and ease of handling. Most web handling systems include 
equipment to unwind the roll of web material, transport it through the various 
manufacturing processes, and rewind it onto a roll. The material is usually 
supported, guided, and propelled by rollers. 

The commercial pressures for increased productivity require higher and 
higher line speeds. As the speed of the line increases, the static and dynamic 
forces acting on the web become more extreme, increasing the likelihood of 
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defects in the material. Wrinkling is one of the most common web defects. 
Several devices have been developed to remove wrinkles from webs or 

prevent them from fonning. The most common spreading devices are the D­
Bar spreader, the curved axis (Mt. Hope) roller, and the concave roller. The 
concave roller is the subject of this paper. The curved axis roller is described 
in a companion paper. 

The construction of the concave roller is very much like the cylindrical 
rollers used in most web handling equipment. The major difference is that the 
roller is not cylindrical, but instead has a smaller diameter at the center, and a 
larger diameter at the ends. The concave roller is closely related to the 
crowned roller which has been used for many years as a means of keeping 
power transmission belts centered on their pulleys. 

The concave roller is much more dependent on surface traction 
between the web and the roller than is the curved axis roller. Without 
sufficient friction, the concave roller can actually increase the likelihood of 
wrinkles. 111is is the primary disadvantage of the concave roller. The primary 
advantage of the concave roller over the curved axis roller is its similarity to 
the cylindrical roller. The concave roller can be made of the same materials, 
and have the same bearing configuration as the other rollers on the machine. 
This means that the concave roller can be designed to survive in the same 
environment as other rollers on the machine. 

BACKGROUND 

Swift [2] developed a design model for the crowned roller based on 
treating the belt as a beam bending due to an applied couple. Sassaki, Hira, 
Abe, Yangagishima, Shimoyama, and Tahara [3] perfonned both analytical and 
experimental investigations on the effect of crowned rollers used in the 
annealing furnace of a steel mill. 

Shelton [4] used the idea of the idle arc as described by Swift to 
develop the principle of web transport. This principle is applied in much of the 
work in web guidance and control, and is used in developing the boundary 
conditions for the curved axis models. Shelton and Reid [5],[6] developed 
models for the lateral dynamics of webs and applied these models to web guide 
control systems. These web guide control systems generally rely on lateral 
shifting and pivoting of intennediate rollers to steer the web. The most 
important principle governing these devices is that the web will seek to align 
itself perpendicular to a roller in the entry span to that roller. Shelton used the 
equation for beam bending to model the lateral motion of the web due to the 
moments induced by the steering rollers. Shelton [7] also used the principles of 
web transport to investigate the dynamics of web tension control 

Pfeiffer [8] used the web transport principle and simple concepts from 
both narrow and wide web systems to offer rules of thumb for web guidance. 
He describes the spreading mechanism of the curved axis roller and the D-bar 
spreader. He also discusses factors governing the traction between the web and 
the roller. 

Butler [9] describes a novel application of the concave roller. Concave 
rollers are being used to remove a condition called "bow" from fabric. Bow 
occurs in fabric when the fibers of the material are shifted in the machine 
direction, and no longer align properly in the cross machine direction. 

Daly (10] investigated the factors controlling traction between webs 
and their carrying rolls. Proper traction is a critical factor in the perfonnance 
of both the concave roller and the curved axis roller. 

389 



Le port [ 11] developed a three-dimensional FEM model of the concave 
roller, and Kliewer [12] continued working with Leport's model, searching for 
a reasonable set of geometric boundary conditions. They both used the method 
given in Zienkiewicz's text [ 13] on Finite Element methods which illustrates 
using a collection of planar elements to model three dimensional shells. 

CONCA VE ROLLER MODEL SURFACE GEOMETRY 

The total surface geometry model of the concave rollers requires the 
following information: 

(I) 

(2) 

(3) 

(4) 

Toe nominal dimensions of all the parts of the model. Tilis 
includes the length and width of the web, the shape and 
orientation of the roller, and the angle of wrap between the web 
and the roller. 
The unstrained coordinates of the discretized shape. These are 
the locations of the nodes used to define the elements. 
The directions of a coordinate system normal to the nominal 
deformed surface at each node location. 
Toe known nodal deformations described in the node normal 
coordinate system. Tilis includes all deformations normal to the 
surface, as well as any known deformations in the plane of the 
web surface. 

This geometry information is calculated independently for the three 
major sections of the roller models: the entry span, the web contacting the 
roller, and the exit span. 

Figure 1 is a schematic showing the nominal geometry of a web over a 
concave roller. The dimensions indicated in the figure are the basis for 
calculating the nodal locations, directions, and deformations required by the 
concave roller model. The geometry of the concave roller system has an axis 
of symmetry parallel to the direction of motion of the web (the machine 
direction). The roller;model takes advantage of this symmetry by storing 
information for only one half of the total geometry. 

In addition to the machine direction line of symmetry, the concave 
roller system has a line of symmetry in the cross machine direction. It is 
located on the roller at one half of the indicated wrap angle. Although this is a 
geometric line of symmetry, the boundary conditions to be described later are 
not symmetric about this line. For this reason, this symmetry is not used in the 
model. 

Because the roller geometry is not a simple cylinder, the web material 
cannot conform itself to the surface of the roller without being strained. In 
order to properly calculate the strains and stresses imposed on the web when 
confonning to the roller shape, the web FEM mesh is first assembled as if it 
were wrapped around a cylindrical roller. Tilis roller has a diameter equal to 
the average diameter of the concave roller. Tilis is shown in figure 2. 

From this unstrained position, the web is then defonned to conform to 
the roller as shown in the figure. Because the diameter of the roller varies in 
the cross machine direction, the magnitude of the defonnation also varies. The 
figure shows the deformation at the outer edge of the web. For the simple 
geometry of the concave roller, all of the deformation required to confonn the 
web to the roller are in the direction normal to the surface of the roller. Tilis is 
modeled in the program as the local Z coordinate. Because all of the Z 
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coordinate defonnations are known in advance, those degrees of freedom are 
not stored explicitly in the FEM stiffness matrix. Instead, the effect of those 
defonnations are assembled into the system force vector. 

For each node location in the model, the directions of a coordinate 
system nonnal to the surface must be calculated. For the concave roller, these 
directions can be calculated as the concatenation of two simple rotations. The 
first is a rotation about the global X axis to align the coordinate system with the 
curvature of the roller at a point on top of the roller. The second is a rotation of 
this new coordinate system about the global Y axis to align the system with the 
wrap angle at the node location. 

THE BOUNDARY CONDITIONS FOR THE MODELS 

The most critical factor in correctly predicting defonnations and 
stresses in the spreading rollers is the application of the proper boundary 
conditions. The boundary conditions used in the models are: 

(1) Zero Y-direction (cross machine direction) displacements at all 
nodes on the centerline of the web. Because of the axis of 
symmetry in both of the rollers at the centerline of the web, only 
one half of the web is modeled. The web centerline is therefore 
one of the boundaries of the remaining portion of the web that is 
modeled. 

(2) Fixed X-direction (machine direction) displacements at the 
beginning of the entry span and the end of the exit span. These 
displacements are calculated from the simple 1-D tension model 
using the dimensions of the web and the nominal line tension. 

(3) Fixed X-direction displacements at all nodes in contact with the 
roller. The first row on nodes on the roller is the zero 
displacement reference point for displacements due to line 
tension. Additional X-directions displacements are added to the 
displacements due to line tension. 

(4) Multi-point constraints in the Y-direction for all nodes in contact 
with the roller. 

The multi-point constraints are used to implement the three physical 
boundary conditions which cause the spreading defonnations. First, the state 
of strain in the free span immediately upstream from the roller contact point is 
identical to the state of strain on the roller immediately after the contact point. 
The second is: given sufficient friction, the web material will remain in contact 
with the surface of the roller. This is the No Slip boundary condition. Finally, 
given sufficient friction, the web material will be oriented nonnal to the roller 
at the initial point of contact with the roller. This is the Nonna! Entry boundary 
condition. 

The governing effect in the behavior of the concave roller is the 
velocity of points on the surface of the roller in contact with the web. The 
velocity magnitude varies across the width of the roller. The velocity direction 
is unifonn and is aligned parallel to the machine direction. This is caused by a 
unifonn roller angular velocity combined with a non-unifonn roller diameter 
and is shown in figure 3. 

Because the roller velocity at the edge of the web is faster than the 
velocity at the center, the concave roller tries to shear the material at the edge 
of the web ahead of the material at the center. This is a local effect which 
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causes a higher machine direction stress at the edge of the web that at the 
centertine of the web immediately before the web contacts the roller. These 
shearing displacements are shown in figure 4. 

These shearing displacements are calculated from a simple FEM model 
of the entry span using the following procedure. 

(1) 

(2) 

(3) 
(4) 

(5) 

(6) 

The strain profile of the material on the web due to the roller 
diameter profile is calculated. This is a differential strain profile. 
The strain at the location on the roller which has the same 
diameter as the average roller diameter is defined to be zero. 
Using this differential strain profile and a simple 1-D tension 
model, the differential force at each node required to maintain 
this strain profile is calculated. 
A 2-D FEM model of the entry span is assembled. 
The nodes at the beginning of the entry span are frozen to zero 
machine direction displacements. 
The differential force profile is applied to the other end of the 
entry span. 
This FEM analysis yields a set of differential displacements. 
These displacements are the shearing displacements that are 
applied as boundary conditions to the full model of the roller. 

There is another effect which induces a machine direction strain profile 
on the nodes of the roller. For constant mass flow in the machine direction, the 
material in contact with the roller at the edge of the web must have a higher 
MD strain than the material at the center of the roller. This compensates for the 
higher velocity at the edge of the web. Because of the way the unstrained web 
is assembled, this effect is induced without additional machine direction 
displacements. This is illustrated in figure 5. 

The final boundary conditions required for the concave roller enforce 
the no slip condition over the roller. Given sufficient friction, a point on the 
web should travel at precisely the same velocity (magnitude and direction) as 
the point it is contacting on the roller. The previous boundary conditions 
assured that the velocity magnitude is matched. Additional constraints are 
required to match the velocity direction. Because the concave roller is 
axisymmetric about a line through its center of rotation, all points on the 
surface of the roller move in a circle. These circles are all in planes that are 
perpendicular to the axis of rotation. This means that the Y location of any 
point on the roller remains constant. If the point on the web contacts the roller 
without slipping, then that point should also remain in a plane having a 
constant Y location. This can be formulated as a multi-point constraint. It is 
required that all nodes on the roller have the same Y-displacement as the node 
having the same nominal Y coordinate that first contacts the roller. This is 
illustrated in figure 6. 

When all of the constraints are combined, all of the degrees of freedom 
of the nodes on the roller are either fixed or are related to another node by a 
multi-point constraint. 

THE SPREADING PROCESS 

The next stage in modeling the spreading rollers is the actual spreading 
process. This process requires an iterative search for a set of cross machine 
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direction displacements that are compatible with the condition of normal entry 
to the roller. 

The search process can be posed as a nonlinear least squares curve 
fitting problem which in effect is a multidimensional nonlinear optimization 
problem. It can be stated as follows: 

Find the set of applied forces which minimize the sum of the 
squares of the deviations from normal entry to the roller. The minimum value 
of this sum in known in advance to be zero. 

The set of applied forces can be selected in two ways. A force can be 
chosen independently for each node at the end of the entry span. This gives as 
many independent variables for the optimization process as there are nodes 
across the width of the web. For the mesh chosen, this would give an eleven 
dimensional optimization problem. 

A better approach is to use a function to define the force distribution 
across these nodes. The problem then becomes one for finding the proper 
values for the coefficients of this function to minimize the least square error. 
This can greatly reduce the order of the optimization problem. The simplest 
choice for the forcing functions are simple polynomials. 

The lowest order polynomial is a simple constant but this does not 
allow any variation of force across the roller width. It seems unlikely that this 
would allow all of the nodes to approach normal entry to the roller. 

The next order polynomial is a straight line. The line is defined by two 
coefficients, and does allow a force variation. If the linear force profile allows 
sufficient variation in force to approach zero error, then the problem is reduced 
from an eleven variable optimization problem to a two variable problem. This 
turns the problem from one that would probably never converge to a reasonable 
solution into one that should converge in a relatively short time. 

The linear force function was implemented in the spreading roller 
analysis program. This simple function allows the search to converge in a 
matter of minutes to very acceptable accuracy. The Nelder-Mead Simplex 
method was used to perform the optimization process. The objective function 
for the search is given in equation (I). 

Nw 

L ( {Slope before roller)- (Slope after roller) f (1) 
i=l 

DEFORMATIONS AND STRESSES PREDICTED BY fflE CONCA VE 
ROLLER MODEL 

The distributions of deformations, stresses, and friction forces over the 
surface of the web are calculated for an example system by the spreading 
model program. The results are summarized using X-Y plots to display the 
spreading deformations, and 3-D contour lines to display the stress 
distributions. 

Figure 7 shows the effective spreading produced by the model. The 
effective spreading is the relative cross-machine direction displacement with 
respect to the same point far upstream. It can also be viewed a the cross-
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machine direction defonnation of a streamline. Toe first thing to notice is that 
the spread lines have zero slope beginning slightly before the point of contact 
with the roller, and ending at the last point of contact with the roller. This 
represents two of the essential properties of the concave roller model. First, the 
no slip boundary condition causes the displacements at the entrance of the 
roller to be transported over the roller. In addition, nonnal entry condition says 
that given sufficient friction, the web will spread so that streamlines approach 
the roller nonnal to the line of initial contact. For both of these, the nonnal 
direction is parallel to the machine direction, therefore the lines have zero 
slope. 

The next thing to notice is that the spread lines converge to zero at the 
left and right sides of the plot. This does not mean that each of these 
streamlines have zero displacement at the ends or even the same displacement. 
Remember that each of these curves represents the deviation in displacement 
relative to the point at the beginning of the entry span. Each of the points at the 
beginning of the entry span have undergone a displacement because of the 
Poisson contraction. In this plot, the deviation of the curve from zero effective 
spreading represents the additional displacement beyond the Poisson 
contraction. At the left and right end, the only displacement in the web is the 
Poisson contraction. This means that the spreading effect is restricted to the 
area near the roller. For the parameter values chosen for the base case, the 
roller affects the web material about one web width upstream and downstream 
of the roller. 

Toe final thing to note from these curves is the relative spreading. Toe 
curve at Y =O has zero effective spreading everywhere. Because Y =O is the 
symmetric centerline of the model, this is to be expected. It is also significant 
that the space between curves near the centerline is greater than the space 
between curves near the edge of the web. Toe total spreading force at any 
point along the width of the web is related to the distance of that point from the 
edge of the web. Toe total spreading force approaches zero as the point 
approaches the edge of the web. 

Figure 8 shows the distribution of machine direction stresses. It shows 
that there is extreme variation in the MD stress. Toe variation is greatest near 
the roller, while the stresses approach a unifonn value farther away from the 
roller. This unifonn value is the nominal MD stress induced by the line 
tension. 

Toe stresses are greatest near the edge of the roller, and smallest near 
the center of the roller. This was expected from simple geometric reasoning. 
Toe outer edges of the roller have a larger radius. Toe material must undergo 
larger strains and stresses to confonn to this larger radius. In addition, the 
velocity at the outer edges is greater than the velocity at the center of the roller. 
This tends to shear the edges of the web ahead of the center, causing greater 
stresses near the edge. An interesting feature common to all of the stress plots 
for the concave roller is also shown in figure 8. Toe stress contours in the area 
where the web is in contact with the roller are all parallel to the machine 
direction. This is again a consequence of the no slip boundary condition which 
says that the state of strain immediately before the roller is transported over the 
surface of the roller. 

Figure 9 shows the cross machine direction stress distribution for the 
concave roller model. Toe range of stresses in the cross machine direction is 
not as large as the range of machine direction stresses. Toe primary feature 
shown in the figure is the character of the CD stress distribution. Toe stresses 
are greatest near the center of the roller, decreasing to near zero at the edge of 

394 



the roller. This stress distribution is consistent with the spreading displacement 
plot. 1be material at the edge of the roller has no spreading force applied to it. 
The material at the center of the roller is being pulled outward by the friction 
forces acting on the entire web, therefore incurring higher stresses. 

It was surprising to see a large region of compressive CD stresses in 
the exit span. The magnitudes of those compressive stresses are small 
compared to the maximum CD tensile stress but are still significant. The 
existence of these compressive stresses can be explained as follows. 1be larger 
radius at the edge of the concave roller tends to shear the material at the edges 
of the web ahead of the material at the center. This shearing induces a MD 
stress profile with significantly larger tensile stresses near the edge of the web 
than at the center of the web. This stress profile acts as a force couple bending 
the edges of the web in toward the center at the exit span, causing compressive 
CD stresses in the exit span. 

Figure 10 shows the shear stress distribution for the concave roller 
model. The shear stress distribution is consistent with the behavior expected 
from the roller geometry. The material at the edges of the roller is sheared 
ahead of the material at the center, therefore the shear stresses are higher at the 
edge. Because the web centerline is a line of symmetry, the shear stresses 
decrease to zero at the web centerline. 1be stress variation is greatest near the 
roller, decreasing to zero in the entry and exit span. 

ANALYSIS OF PARAMETER VARIATIONS 

The previous section examined the deformation and stress 
distribution over the entire web surface for a base set of parameter 
values. In this section, the parameters will be varied around those base 
values. This study required approximately 35 runs of the computer 
model. It is not feasible to discuss the resulting stress and deformation 
plots for each of those runs. Instead, representative values were 
tabulated from each of those runs, and combined in a set of summary 
plots. These summary plots were examined for trends in the response of 
the model to parameter variations. 

These summary plots are organized in the following manner. For 
the range of values of a single parameter the following four plots are 
generated: 

(1) Maximum effective spreading displacement (spreading beyond 
the Poisson contraction at the point on the outer edge of the web 
where it exits the roller) 

(2) Maximum coefficient of friction required to enforce the 
predicted displacements 

(3) Maximum and minimum machine direction (MD) stresses on a 
combined plot 

(4) Maximum and minimum cross machine direction (CD) stresses 
on a combined plot 

In each of these plots, the values in the list above are plotted on 
the vertical axis, and the values of the parameter being varied are on the 
horizontal axis. 

The values for the parameters used in this study are given in 
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Table I. The values shown in bold print are the base parameter values 
for the roller. There were 36 plots generated in the analysis of parameter 
variations. Because of space limitations, only the plots for variation in 
the roller radius of curvature are given in this paper. 

VARIATIONS IN ROLLER PROF1LE RADIUS OF CURVATURE 

It should not be surprising that the roller profile radius of curvature is 
the most significant parameter effecting the spreading behavior of the concave 
roller. Figures 11 through 14 show the effects of roller profile radius of 
curvature on the concave roller. The roller radius of curvature is intuitively the 
most significant parameter for the behavior of the roller. The roller curvature is 
the reason that the roller spreads the web. The amount of curvature is the only 
thing that differentiates this roller from simple cylindrical rollers. The curves 
show that the model produces results that match intuition. 

The max spread and max friction curves show decreasing values with 
increasing radii of curvature. A radius of curvature of infinity produces a 
cylindrical roller. Thus, the behavior of the roller should approach the behavior 
of a cylindrical roller as the radius of curvature approaches infinity. For large 
radii, both the max spread and the max friction approach zero. In addition, 
both the max and the min MD stresses approach the nominal line tension, and 
the max and min CD stresses approach zero. 

RESULTS 

One of the limitations of the program arose from the need to produce 
and distribute models that do not require a mainframe or super-computer to 
give reasonable execution times. The current versions of the models do not 
allow slippage between the rollers and the web. Instead the models enforce the 
no-slip boundary condition, and report the resulting friction forces. For this 
reason, the current versions of the models are best used as tools to design 
rollers that do not slip. This is accomplished by varying roller geometry until 
the maximum friction requirements are lower than those known to be available. 

The models can also be used to gain an understanding of existing 
spreading roller installations. By modeling the existing geometry, it can be 
detennined whether or not the roller slips. This in itself is a significant piece of 
infonnation. This model also gives an upper limit on the defonnations and 
stresses in the web. If slipping occurs, both the deformations and stresses 
should be lower than those predicted. 

Previous attempts at modeling these rollers allowed the web to 
conform to the doubly curved shape of these spreading rollers without 
incurring any strain in the material. Then the strains were simulated by adding 
local deformations. These local deformations had a significant effect on the 
calculated spreading. In the models produced by this research, the unstrained 
web was assembled around an average cylindrical roller. Then the correct set 
of boundary deformations was applied to cause the web to conform to the 
shape of the roller. This allowed both the web strains and deformations to be 
modeled more accurately. 

In modeling the spreading process, nonlinear optimization techniques 
were used to find the correct set of spreading displacements. Those 
displacements were consistent with the fact that the streamlines in the web are 
steered to nonnal entry. 
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The most swprising conclusion reached from the concave roller model 
is the high values of coefficient of friction that are required to prevent slippage 
between the web and the roller. This is particularly true in the concave roller. 
The largest forces in the concave roller are the MD forces near the edges of the 
web. These are the forces that shear the edges of the web ahead of the center. 
Coefficients of friction greater than 1.0 were predicted for concave rollers 
having cmvature values that were thought to be in a reasonable range. 

RECOMMENDATIONS 

The principal recommendations for extension of this work pertain to 
extending the capabilities in the model,. Three new capabilities in the model 
are of immediate interest to this author. First, the ability to allow slipping 
should be added. This will require a significant increase in computing power to 
perform the large number of iterations in a reasonable amount of time. 
Because of rapid improvements in computer speed, accompanied by reductions 
in price, machines capable of modeling slipping should be available to most 
engineers in the near future. 

The model should also be modified to allow the web to move off of the 
centerline of the roller. Because these spreading rollers are de stabilizing 
devices, it would be useful to calculate the maximlllD displacement of the web 
centerline, and the resulting stress distribution. This would be a first step in 
modeling the lateral dynamics of webs on spreading rollers. 

Finally, the spreading model should be combined with a wrinkle model 
to investigate the ability of these rollers to prevent wrinkling. A very simple 
wrinkle model might be a lateral compressive force or displacement 
distribution at some point in the entry span. The maximUID compressive stress 
remaining at the entrance of the roller should be a good indication of the ability 
of the roller to prevent wrinkling. 
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TABLE! 

Concave Roller Parameter y alues 

Thickness (in) 

Machine Direction Modulus (psi) 
50000 117000 1S7000 200000 

Cross Direction Modulus (psi) 
50000 117000 157000 200000 

Machine Direction Poisson's Ratio 
0.1 0.16 0.2 0.3 

Web Width (in) 
3 6 9 12 

Line Tension (pli) 
1.0 1.S 2.0 3.0 

Roller Radius (in) 
0.75 1.12S 2.0 3.0 

Roller Profile Radius of Curvature (in) 
1250 2000 3000 5000 

w ) 
30 60 90 120 
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Figure 1. Concave Roller Nominal Dimensions 
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Figure 2. Web Deformed from Average Roller Diameter 
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End Velocity 
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Figure 3. Velocity Variation on the Concave Roller 

Figure 4. Machine Direction Shearing of the Web 
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Figure 5. Machine Direction Strains Induced by Local Z-direction 
Displacements 
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Figure 6. Y-lock Multi-point Constraints Over the Roller 
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Figure 7. Concave Roller Base Run Effective Spreading 
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Stress in Machine Direction 
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are not shown in 
the Stress Plots 
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Figure 8. Annotated MD Stress Plot 
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Stress in 0-oss Madiine Direction 
Concave Roller Base Run .... th • 0.0012 STRESS LEVELS 
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Figure 9. Concave Roller Base Run CD Stresses 

Shear Stress 
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Figure 10. Concave Roller Base Run Shear Stresses 
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Concave Roller Data 
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Figure 11. Concave Roller - Spread vs. Radius of Curvature 
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Figure 12. Concave Roller - Friction vs. Radius of Curvature 
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Figure 13. Concave Roller- MD Stress vs. Radius of Curvature 
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Figure 14. Concave Roller- CD Stress vs. Radius of Curvature 
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QUESTIONS AND ANSWERS 

Q. What set of parameter values were used to generate the data for figure 7? 

A. Well, that figure is for one set of parameters in the model, what I call my base 
set of parameters, and if you flip to Table I, which shows the range of 
parameters that I studied, I think you'll notice that some of those numbers are 
in bold. All of the stress and displacement plots are for those numbers in bold. 
I call that my base set of parameters. 

Q. Can extreme amounts of curvature in the roller actually cause greater 
wrinkling? 

A. Yes, if you go to that kind of an extreme, that's correct. My understanding is 
that you should never be able to see with the naked eye, just glancing at a 
roller, you shouldn't be able to see the shape of the thing. 

Q. Isn't it true that the spreading effect dissipates in about 1½ inches? 

A. That's absolutely correct. I'd have to look at the numbers. An inch and a half 
seems a little bit fast. This is a 6 inch wide web, and I would say that all of the 
effect is basically gone within a I web width from the roller. 

Q. Have you considered modifying your model to incorporate slipping? 

A. I already have, I'm simply not ready to report on it, but that model is working. 
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