18 research outputs found

    Detection of a putative TetR-like gene related to Mycobacterium bovis BCG growth in cholesterol using a gfp-transposon mutagenesis system

    Get PDF
    In vitro transposition is a powerful genetic tool for identifying mycobacterial virulence genes and studying virulence factors in relation to the host. Transposon shuttle mutagenesis is a method for constructing stable insertions in the genome of different microorganisms including mycobacteria. Using an IS1096 derivative, we have constructed the Tngfp, a transposon containing a promoterless green fluorescent protein (gfp) gene. This transposon was able to transpose randomly in Mycobacterium bovis BCG. Bacteria with a single copy of the gfp gene per chromosome from an M. bovis BCG::Tngfp library were analyzed and cells exhibiting high levels of fluorescence were detected by flow cytometry. Application of this approach allowed for the selection of a mutant, BCG_2177c::Tngfp (BCG-Tn), on the basis of high level of long-standing fluorescence at stationary phase. This BCG-Tn mutant showed some particular phenotypic features compared to the wild type strain, mainly during stationary phase, when cholesterol was used as a sole carbon source, thus supporting the relationships of the targeted gene with the regulation of cholesterol metabolism in this bacteria. This approach showed that Tngfp is a potentially useful tool for studying the involvement of the targeted loci in metabolic pathways of mycobacteria

    The lack of the TetR-like repressor gene BCG_2177c (Rv2160A) may help mycobacteria overcome intracellular redox stress and survive longer inside macrophages when surrounded by a lipid environment

    Get PDF
    Mycobacteria, like other microorganisms, survive under different environmental variations by expressing an efficient adaptive response, oriented by regulatory elements, such as transcriptional repressors of the TetR family. These repressors in mycobacteria also appear to be related to cholesterol metabolism. In this study, we have evaluated the effect of a fatty acid (oleic–palmitic–stearic)/cholesterol mixture on some phenotypic and genotypic characteristics of a tetR-mutant strain (BCG_2177c mutated gene) of M. bovis BCG, a homologous of Rv2160A of M. tuberculosis. In order to accomplish this, we have analyzed the global gene expression of this strain by RNA-seq and evaluated its neutral-lipid storage capacity and potential to infect macrophages. We have also determined the macrophage response by measuring some pro- and anti-inflammatory cytokine expressions. In comparison with wild-type microorganisms, we showed that the mutation in the BCG_2177c gene did not affect the growth of M. bovis BCG in the presence of lipids but it probably modified the structure/composition of its cell envelope. Compared to with dextrose, an overexpression of the transcriptome of the wild-type and mutant strains was observed when these mycobacteria were cultured in lipids, mainly at the exponential phase. Twelve putative intracellular redox balance maintenance genes and four others coding for putative transcriptional factors (including WhiB6 and three TetR-like) were the main elements repeatedly overexpressed when cultured in the presence of lipids. These genes belonged to the central part of what we called the “genetic lipid signature” for M. bovis BCG. We have also found that all these mycobacteria genotypic changes affected the outcome of BCG-infected macrophages, being the mutant strain most adapted to persist longer inside the host. This high persistence result was also confirmed when mutant-infected macrophages showed overexpression of the anti-inflammatory cytokine TGF-ß versus pro-inflammatory cytokines. In summary, the lack of this TetR-like repressor expression, within a lipid environment, may help mycobacteria overcome intracellular redox stress and survive longer inside their host

    Expression, maturation and turnover of DrrS, an unusually stable, DosR regulated small RNA in Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis depends on the ability to adjust to stresses encountered in a range of host environments, adjustments that require significant changes in gene expression. Small RNAs (sRNAs) play an important role as post-transcriptional regulators of prokaryotic gene expression, where they are associated with stress responses and, in the case of pathogens, adaptation to the host environment. In spite of this, the understanding of M. tuberculosis RNA biology remains limited. Here we have used a DosR-associated sRNA as an example to investigate multiple aspects of mycobacterial RNA biology that are likely to apply to other M. tuberculosis sRNAs and mRNAs. We have found that accumulation of this particular sRNA is slow but robust as cells enter stationary phase. Using reporter gene assays, we find that the sRNA core promoter is activated by DosR, and we have renamed the sRNA DrrS for DosR Regulated sRNA. Moreover, we show that DrrS is transcribed as a longer precursor, DrrS+, which is rapidly processed to the mature and highly stable DrrS. We characterise, for the first time in mycobacteria, an RNA structural determinant involved in this extraordinary stability and we show how the addition of a few nucleotides can lead to acute destabilisation. Finally, we show how this RNA element can enhance expression of a heterologous gene. Thus, the element, as well as its destabilising derivatives may be employed to post-transcriptionally regulate gene expression in mycobacteria in combination with different promoter variants. Moreover, our findings will facilitate further investigations into the severely understudied topic of mycobacterial RNA biology and into the role that regulatory RNA plays in M. tuberculosis pathogenesis

    Characterization of an rRNA Operon (rrnB) of Mycobacterium fortuitum and Other Mycobacterial Species: Implications for the Classification of Mycobacteria

    No full text
    Mycobacteria are thought to have either one or two rRNA operons per genome. All mycobacteria investigated to date have an operon, designated rrnA, located downstream from the murA gene. We report that Mycobacteriun fortuitum has a second rrn operon, designated rrnB, which is located downstream from the tyrS gene; tyrS is very close to the 3" end of a gene (3-mag) coding for 3-methylpurine-DNA-glycosylase. The second rrn operon of Mycobacterium smegmatis was shown to have a similar organization, namely, 5" 3-mag-tyrS-rrnB 3". The rrnB operon of M. fortuitum was found to have a single dedicated promoter. During exponential growth in a rich medium, the rrnB and rrnA operons were the major and minor contributors, respectively, to pre-rRNA synthesis. Genomic DNA was isolated from eight other fast-growing mycobacterial species. Samples were investigated by Southern blot analysis using probes for murA, tyrS, and 16S rRNA sequences. The results revealed that both rrnA and rrnB operons were present in each species. The results form the basis for a proposed new scheme for the classification of mycobacteria. The approach, which is phylogenetic in concept, is based on particular properties of the rrn operons of a cell, namely, the number per genome and a feature of 16S rRNA gene sequences
    corecore