17 research outputs found
Ecology and Molecular Epidemiology of Avian and Swine Influenza A viruses in Guatemala
The greatest diversity of Influenza A viruses (IAV) is found in waterfowl species from numerous geographic locations. In addition, multiple IAV are, and continue to be, perpetuated in swine populations around the globe. Due to the zoonotic potential of IAV and to respond more effectively to potential agricultural and public health threats, there is a need to increase surveillance in avian and swine hosts in understudied geographical regions. In Latin America, avian influenza surveillance has been scarce, localized only to places where outbreaks in poultry have occurred. Similarly, active swine influenza surveillance was implemented only after the emergence of the 2009 pandemic strain (pH1N1). The project presented here was aimed at investigating the circulation of IAV in wild birds and pigs in Guatemala. Over 2200 birds were sampled during six consecutive migration seasons from 2007 to 2013 in different locations. Virus prevalence detected by rRT-PCR in positive species ranged from 5.2% to 38%. Preliminary data indicates temporal variation of IAV prevalence in migratory waterfowl. Eighty-three viruses were recovered with 22 different subtype combinations. Through phylogenetic inferences and the analysis of virus genotypes and gene constellations of 60 fully sequenced genomes, we provide a detailed description of the genetic structure of avian IAV circulating in Guatemala. Our results suggest that the virus diversity in this location is sourced from multiple migration flyways from North America. Overlap of these flyways, in a natural geographical bottleneck such as the Neotropics, may contribute to the patterns of extensive genetic reassortment observed at a continental scale.
In addition, the results from two nationwide multistage random surveys in pigs demonstrated circulation of swine influenza in commercial and peridomestic herds in Guatemala. Herd prevalence of IAV was 36.3% in 2010 and 34.6% in 2011. Viruses of the H1N1 and H3N2 subtypes and antibodies against viruses of distinct genetic lineages of these subtypes were detected. Our results indicate that human-animal contact likely plays a role in the IAV epidemiology in local swine populations. The findings from this research constitute the most abundant data on the ecology and epidemiology of animal influenza currently available for Central America
Origin, distribution, and potential risk factors associated with influenza A virus in swine in two production systems in Guatemala
Background: Guatemala is the country with the largest swine production in Central America; however, evidence of influenza A virus (IAV) in pigs has not been clearly delineated.
Objectives: In this study, we analyzed the presence and spatial distribution of IAV in commercial and backyard swine populations.
Methods: Samples from two nationwide surveys conducted in 2010 and 2011 were tested using virological (rRT-PCR and virus isolation) and serological (ELISA and hemagglutination inhibition) assays to detect IAV.
Results: Influenza A virus was detected in 15.7% of the sampled pigs (30.6% of herds) in 2010 and in 11.7% (24.2% of herds) in 2011. The percentage of seropositive pigs was 10.6% (16.1% of herds) and 1.4% (3.1% of herds) for each year, respectively. Three pandemic H1N1 and one seasonal human-like H3N2 viruses were isolated. Antibodies against viruses from different genetic clusters were detected. No reassortant strains with swine viruses were detected. The H3N2 virus was closely related to human viruses that circulated in Central America in 2010, distinct to the most recent human seasonal vaccine lineages. Spatial clusters of rRT-PCR positive herds were detected each year by scan statistics.
Conclusions: Our results demonstrate circulation of IAV throughout Guatemala and identify commercial farms, animal health status, and age as potential risk factors associated with IAV infection and exposure. Detection of human-origin viruses in pigs suggests a role for humans in the molecular epidemiology of IAV in swine in Guatemala and evidences gaps in local animal and human surveillance
Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in New England Seals, United States
We report the spillover of highly pathogenic avian influenza A(H5N1) into marine mammals in the northeastern United States, coincident with H5N1 in sympatric wild birds. Our data indicate monitoring both wild coastal birds and marine mammals will be critical to determine pandemic potential of influenza A viruses
Blue-Winged Teals in Guatemala and Their Potential Role in the Ecology of H14 Subtype Influenza a Viruses
Wild aquatic birds are considered the natural hosts of 16 HA (H1–H16) and 9 NA (N1–N9) subtypes of influenza A viruses (FLUAV) found in different combinations. H14 FLUAVs are rarely detected in nature. Since 2011, H14 FLUAVs have been consistently detected in Guatemala, leading to the largest collection of this subtype from a single country. All H14 FLUAVs in Guatemala were detected from blue-winged teal samples. In this report, 17 new full-length H14 FLUAV genome sequences detected from 2014 until 2019 were analyzed and compared to all published H14 sequences, including Guatemala, North America, and Eurasia. The H14 FLUAVs identified in Guatemala were mostly associated with the N3 subtype (n = 25), whereas the rest were paired with either N4 (n = 7), N5 (n = 4), N6 (n = 1), and two mixed infections (N3/N5 n = 2, and N2/N3 n = 1). H14 FLUAVs in Guatemala belong to a distinct H14 lineage in the Americas that is evolving independently from the Eurasian H14 lineage. Of note, the ORF of the H14 HA segments showed three distinct motifs at the cleavage site, two of these containing arginine instead of lysine in the first and fourth positions, not previously described in other countries. The effects of these mutations on virus replication, virulence, and/or transmission remain unknown and warrant further studies
Blue-Winged Teals in Guatemala and Their Potential Role in the Ecology of H14 Subtype Influenza a Viruses
Wild aquatic birds are considered the natural hosts of 16 HA (H1–H16) and 9 NA (N1–N9) subtypes of influenza A viruses (FLUAV) found in different combinations. H14 FLUAVs are rarely detected in nature. Since 2011, H14 FLUAVs have been consistently detected in Guatemala, leading to the largest collection of this subtype from a single country. All H14 FLUAVs in Guatemala were detected from blue-winged teal samples. In this report, 17 new full-length H14 FLUAV genome sequences detected from 2014 until 2019 were analyzed and compared to all published H14 sequences, including Guatemala, North America, and Eurasia. The H14 FLUAVs identified in Guatemala were mostly associated with the N3 subtype (n = 25), whereas the rest were paired with either N4 (n = 7), N5 (n = 4), N6 (n = 1), and two mixed infections (N3/N5 n = 2, and N2/N3 n = 1). H14 FLUAVs in Guatemala belong to a distinct H14 lineage in the Americas that is evolving independently from the Eurasian H14 lineage. Of note, the ORF of the H14 HA segments showed three distinct motifs at the cleavage site, two of these containing arginine instead of lysine in the first and fourth positions, not previously described in other countries. The effects of these mutations on virus replication, virulence, and/or transmission remain unknown and warrant further studies
Genomic and ultrastructural analysis of monkeypox virus in skin lesions and in human/animal infected cells reveals further morphofunctional insights into viral pathogenicity
Monkeypox (MPOX) is a zoonotic disease that affects humans and other primates, resulting in a smallpox-like illness. It is caused by monkeypox virus (MPXV), which belongs to the Poxviridae family. Clinically manifested by a range of cutaneous and systemic findings, as well as variable disease severity phenotypes based on the genetic makeup of the virus, the cutaneous niche and respiratory mucosa are the epicenters of MPXV pathogenicity. Herein, we describe the ultrastructural features of MPXV infection in both human cultured cells and cutaneous clinical specimens collected during the 2022–2023 MPOX outbreak in New York City that were revealed through electron microscopy. We observed typical enveloped virions with brick-shaped morphologies that contained surface protrusions, consistent with the classic ultrastructural features of MPXV. In addition, we describe morpho-functional evidence that point to roles of distinct cellular organelles in viral assembly during clinical MPXV infection. Interestingly, in skin lesions, we found abundant melanosomes near viral assembly sites, particularly in the vicinity of mature virions, which provides further insight into virus-host interactions at the subcellular level that contribute to MPXV pathogenesis. These findings not only highlight the importance of electron microscopic studies for further investigation of this emerging pathogen but also in characterizing MPXV pathogenesis during human infectio
Phylogenetic landscape of Monkeypox Virus (MPV) during the early outbreak in New York City, 2022
ABSTRACTMonkeypox (MPOX) is a zoonotic disease endemic to regions of Central/Western Africa. The geographic endemicity of MPV has expanded, broadening the human-monkeypox virus interface and its potential for spillover. Since May 2022, a large multi-country MPV outbreak with no proven links to endemic countries has originated in Europe and has rapidly expanded around the globe, setting off genomic surveillance efforts. Here, we conducted a genomic analysis of 23 MPV-infected patients from New York City during the early outbreak, assessing the phylogenetic relationship of these strains against publicly available MPV genomes. Additionally, we compared the genomic sequences of clinical isolates versus culture-passaged samples from a subset of samples. Phylogenetic analysis revealed that MPV genomes included in this study cluster within the B.1 lineage (Clade IIb), with some of the samples displaying further differentiation into five different sub-lineages of B.1. Mutational analysis revealed 55 non-synonymous polymorphisms throughout the genome, with some of these mutations located in critical regions required for viral multiplication, structural and assembly functions, as well as the target region for antiviral treatment. In addition, we identified a large majority of polymorphisms associated with GA > AA and TC > TT nucleotide replacements, suggesting the action of human APOBEC3 enzyme. A comparison between clinical isolates and cell culture-passaged samples failed to reveal any difference. Our results provide a first glance at the mutational landscape of early MPV-2022 (B.1) circulating strains in NYC