11,673 research outputs found

    Neutrinoless double-beta decay. A brief review

    Full text link
    In this brief review we discuss the generation of Majorana neutrino masses through the see-saw mechanism, the theory of neutrinoless double-beta decay, the implications of neutrino oscillation data for the effective Majorana mass, taking into account the recent Daya Bay measurement of theta_13, and the interpretation of the results of neutrinoless double-beta decay experiments.Comment: 22 page

    Resolving parameter degeneracies in long-baseline experiments by atmospheric neutrino data

    Full text link
    In this work we show that the physics reach of a long-baseline (LBL) neutrino oscillation experiment based on a superbeam and a megaton water Cherenkov detector can be significantly increased if the LBL data are combined with data from atmospheric neutrinos (ATM) provided by the same detector. ATM data are sensitive to the octant of θ23\theta_{23} and to the type of the neutrino mass hierarchy, mainly through three-flavor effects in e-like events. This allows to resolve the so-called θ23\theta_{23}- and sign(Δm312\Delta m^2_{31})-parameter degeneracies in LBL data. As a consequence it becomes possible to distinguish the normal from the inverted neutrino mass ordering at 2σ2\sigma CL from a combined LBL+ATM analysis if sin22θ130.02\sin^2 2\theta_{13} \gtrsim 0.02. The potential to identify the true values of sin22θ13\sin^2 2\theta_{13} and the CP-phase δcp\delta_{cp} is significantly increased through the lifting of the degeneracies. These claims are supported by a detailed simulation of the T2K (phase II) LBL experiment combined with a full three-flavor analysis of ATM data in the HyperKamiokande detector.Comment: 25 pages, 10 figure

    Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data

    Full text link
    Context. The direct detection of exoplanets with high-contrast imaging requires advanced data processing methods to disentangle potential planetary signals from bright quasi-static speckles. Among them, angular differential imaging (ADI) permits potential planetary signals with a known rotation rate to be separated from instrumental speckles that are either statics or slowly variable. The method presented in this paper, called ANDROMEDA for ANgular Differential OptiMal Exoplanet Detection Algorithm is based on a maximum likelihood approach to ADI and is used to estimate the position and the flux of any point source present in the field of view. Aims. In order to optimize and experimentally validate this previously proposed method, we applied ANDROMEDA to real VLT/NaCo data. In addition to its pure detection capability, we investigated the possibility of defining simple and efficient criteria for automatic point source extraction able to support the processing of large surveys. Methods. To assess the performance of the method, we applied ANDROMEDA on VLT/NaCo data of TYC-8979-1683-1 which is surrounded by numerous bright stars and on which we added synthetic planets of known position and flux in the field. In order to accommodate the real data properties, it was necessary to develop additional pre-processing and post-processing steps to the initially proposed algorithm. We then investigated its skill in the challenging case of a well-known target, β\beta Pictoris, whose companion is close to the detection limit and we compared our results to those obtained by another method based on principal component analysis (PCA). Results. Application on VLT/NaCo data demonstrates the ability of ANDROMEDA to automatically detect and characterize point sources present in the image field. We end up with a robust method bringing consistent results with a sensitivity similar to the recently published algorithms, with only two parameters to be fine tuned. Moreover, the companion flux estimates are not biased by the algorithm parameters and do not require a posteriori corrections. Conclusions. ANDROMEDA is an attractive alternative to current standard image processing methods that can be readily applied to on-sky data

    Proper motions of the HH1 jet

    Get PDF
    We describe a new method for determining proper motions of extended objects, and a pipeline developed for the application of this method. We then apply this method to an analysis of four epochs of [S~II] HST images of the HH~1 jet (covering a period of 20\sim 20~yr). We determine the proper motions of the knots along the jet, and make a reconstruction of the past ejection velocity time-variability (assuming ballistic knot motions). This reconstruction shows an "acceleration" of the ejection velocities of the jet knots, with higher velocities at more recent times. This acceleration will result in an eventual merging of the knots in 450\sim 450~yr and at a distance of 80"\sim 80" from the outflow source, close to the present-day position of HH~1.Comment: 12 pages, 8 figure

    Strength, jumping, and change of direction speed asymmetries are not associated with athletic performance in elite academy soccer players

    Get PDF
    The aims of the present study were twofold: 1) to measure inter-limb asymmetries from a battery of fitness tests in youth soccer players and, 2) determine the association between asymmetry and measures of athletic performance. Sixteen elite youth soccer players (14.7 ± 0.2 years) performed a single leg Abalakov test (ABK), change of direction (COD) test over 10 m (5 + 5) and 20 m (10 + 10), and an iso-inertial power test. Subjects also performed 10 m, 20 m and 30 m sprints and a bilateral countermovement jump (CMJ), which were correlated with all ABK, COD and iso-inertial asymmetry scores. A one-way repeated measures ANOVA showed significant differences between inter-limb asymmetry scores across multiple tests (p 0.05) between the different inter-limb asymmetry scores, and between asymmetry scores and athletic performance. These findings show the test-specific nature of asymmetries in youth soccer players, with the iso-inertial power test being the most sensitive in detecting asymmetry. Moreover, the results obtained suggest that inherent asymmetry in young soccer players did not negatively impact their performance
    corecore