10,517 research outputs found
A Tool for Integer Homology Computation: Lambda-At Model
In this paper, we formalize the notion of lambda-AT-model (where is
a non-null integer) for a given chain complex, which allows the computation of
homological information in the integer domain avoiding using the Smith Normal
Form of the boundary matrices. We present an algorithm for computing such a
model, obtaining Betti numbers, the prime numbers p involved in the invariant
factors of the torsion subgroup of homology, the amount of invariant factors
that are a power of p and a set of representative cycles of generators of
homology mod p, for each p. Moreover, we establish the minimum valid lambda for
such a construction, what cuts down the computational costs related to the
torsion subgroup. The tools described here are useful to determine topological
information of nD structured objects such as simplicial, cubical or simploidal
complexes and are applicable to extract such an information from digital
pictures.Comment: Journal Image and Vision Computing, Volume 27 Issue 7, June, 200
Using membrane computing for obtaining homology groups of binary 2D digital images
Membrane Computing is a new paradigm inspired from cellular communication. Until now, P systems have been used in research areas like modeling chemical process, several ecosystems, etc. In this paper, we apply P systems to Computational Topology within the context of the Digital Image. We work with a variant of P systems called tissue-like P systems to calculate in a general maximally parallel manner the homology groups of 2D images. In fact, homology computation for binary pixel-based 2D digital images can be reduced to connected component labeling of white and black regions. Finally, we use a software called Tissue Simulator to show with some examples how these systems wor
Performances of multi-gap timing RPCs for relativistic ions in the range Z=1-6
We present the performance of Multi-gap timing RPCs under irradiation by
fully stripped relativistic ions (gamma*beta=2.7, Z=1-6). A time resolution of
80 ps at high efficiency has been obtained by just using standard `off the
shelf' 4-gap timing RPCs from the new HADES ToF wall. The resolution worsened
to 100 ps for ~ 1 kHz/cm2 proton flux and for ~ 100 Hz/cm2 Carbon flux. The
chambers were operated at a standard field of E=100 kV/cm and showed a high
stability during the experiment, supporting the fact that RPCs are a convenient
choice when accommodating a very broad range of ionizing particles is needed.
The data provides insight in the region of very highly ionizing particles (up
to x 36 mips) and can be used to constrain the existing avalanche and
Space-Charge models far from the usual `mip valley'. The implications of these
results for the general case of detection based on secondary processes (n,
gamma) resulting in highly ionizing particles with characteristic energy
distributions will be discussed, together with the nature of the time-charge
correlation curve.Comment: 31 pages, 19 figures, submitted to JINS
Studying the evolution of galaxies in compact groups over the past 3 Gyr - II. The importance of environment in the suppression of star formation
We present an in depth study on the evolution of galaxy properties in compact
groups over the past 3 Gyr. We are using the largest multi-wavelength sample
to-date, comprised 1770 groups (containing 7417 galaxies), in the redshift
range of 0.01<z<0.23. To derive the physical properties of the galaxies we rely
on ultraviolet (UV)-to-infrared spectral energy distribution modeling, using
CIGALE. Our results suggest that during the 3 Gyr period covered by our sample,
the star formation activity of galaxies in our groups has been substantially
reduced (3-10 times). Moreover, their star formation histories as well as their
UV-optical and mid-infrared colors are significantly different from those of
field and cluster galaxies, indicating that compact group galaxies spend more
time transitioning through the green valley. The morphological transformation
from late-type spirals into early-type galaxies occurs in the mid-infrared
transition zone rather than in the UV-optical green valley. We find evidence of
shocks in the emission line ratios and gas velocity dispersions of the
late-type galaxies located below the star forming main sequence. Our results
suggest that in addition to gas stripping, turbulence and shocks might play an
important role in suppressing the star formation in compact group galaxies.Comment: (Accepted for publication in MNRAS, date of submission November 18,
2015
- …