23 research outputs found

    Inmunolocalización del sistema TGFB1 en fibrosis de la glándula submandibular bajo periodontitis experimental en ratas

    Get PDF
    La saliva es la primera barrera para la entrada de bacterias y virus en el cuerpo. Las glándulas submandibulares (GSM) contribuyen al mantenimiento de la salud oral y a la regulación de las respuestas inmunoinflamatorias. Estudios previos sugieren que el factor de crecimiento transformante beta 1 (TGFB1) puede contribuir a la fibrosis de las glándulas salivales, pero la expresión y localización del sistema TGFB1 en las GSM no ha sido dilucidada. El objetivo del presente trabajo fue analizar por inmunohistoquímica en las GSM de ratas la expresión de TGFB1 y sus receptores específicos ALK5 (profibrótico) y ALK1 (proproliferativo) y el coreceptor endoglina (EDG) en un modelo de periodontitis bilateral experimental (PE) (hilo de algodón alrededor del cuello de los primeros molares inferiores) durante 1 y 6 semanas. Las GSM fueron fijadas y embebidas en parafina para realizar cortes seriados los cuales se tiñeron con hematoxilinaeosina para analizar la histología o se procesaron para realizar la técnica de inmunohistoquímica mediante detección con diaminobenzidine. La histología de las GSM de animales con PE reveló cambios estructurales tiempo dependientes, con una marcada reducción de la altura de los conductos, destrucción celular, pérdida de gránulos secretores, congestión periductal y exceso de tejido conectivo que rodea los conductos, indicando un proceso de fibrosis respecto de las GSM de animales control. TGFB1, ALK5 y ALK1 y el coreceptor EDG fueron principalmente inmunolocalizados en las células que forman los ductos y en las áreas de fibrosis en los grupos con PE. La expresión del receptor profibrótico ALK5 se incrementó en las áreas de fibrosis en GSM de animales con PE. En GSM de ratas con PE, la localización de los receptores específicos de TGFB1 en las células de los conductos y áreas de fibrosis, junto con la expresión de TGFB1 en las áreas circundantes, podría indicar acciones paracrinas y autocrinas ejercidas por TGFB1 a través de sus receptores específicos. Los resultados de este estudio sugieren que TGFB1 podría inducir un proceso de fibrosis promoviendo la proliferación celular a través de los receptores ALK1 y EDG, y favoreciendo procesos relacionados con la fibrosis a través de su receptor ALK5, lo que conduciría a una actividad secretora anormal de la GSM durante la enfermedad periodontal.Saliva is the first barrier to entry of bacteria and viruses into the body. The submandibular glands (SMG) contribute to the maintenance of oral health and regulation of immune/ inflam matory responses. Previous studies suggest that transforming growth factor beta 1 (TGFB1) may contribute to salivary gland fibrosis but the expression of the TGFB1 system in the SMG has not been elucidated. Thus, the aim of this study was to analyze in rat SMG the immunolocalization of TGFB1 and its specific receptors ALK5 (profibrotic) and ALK1 (proproliferative) and the coreceptor endoglin (EDG) in a bilateral experimental periodontitis (EP) model (cotton thread ligature around the neck of the first lower molars) for 1 and 6 weeks. Fixed SMG were embedded in paraffin and serially cut for routine hematoxylin–eosin staining for histological analysis or immunohistochemical techniques by diaminobenzidine detection. SMG histology from animals with EP showed timedependent structural changes involving marked reduction in the height of the contoured ducts, cell destruction, loss of secretory granules, periductal congestion and excess connective tissue surrounding these ducts indicative of a fibrotic process, compared to control SMG. TGFB1, ALK5 and ALK1 receptors and the coreceptor EDG were mainly immunolocalized in ductal cells and in the fibrotic areas in EP groups. The expression of the profibrotic ALK5 receptor was increased in areas of fibrosis in SMG of animals with EP. In SMG of rats with EP, the localization of the TGFB1 specific receptors in the ducts and cells from fibrotic areas, due to the expression of TGFB1 in the surrounding areas, might indicate paracrine and autocrine actions exerted by TGFB1 via its specific receptors. The results of this study suggest that TGFB1 promotes fibrosis, inducing cell proliferation via ALK1 and EDG receptors and stimulates fibrosis relatedprocesses via ALK5 receptor, which could lead to abnormal secretor activity of the SMG during periodontal disease.Fil: Gonzalez, Candela Rocio. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico. Departamento de Estudios Biomédicos y Biotecnológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Amer, Mariano. Universidad de Buenos Aires. Facultad de Odontología; ArgentinaFil: Vitullo, Alfredo Daniel. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico. Departamento de Estudios Biomédicos y Biotecnológicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gonzalez Calvar, Silvia I.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Vacas, María I.. Hospital Italiano. Instituto Universitario - Escuela de Medicina; Argentin

    Testosterone induction of prostaglandin-endoperoxide synthase 2 expression and prostaglandin F 2α production in hamster Leydig cells

    Get PDF
    We have previously observed expression of prostaglandin-endoperoxide synthase 2 (PTGS2), the key enzyme in the biosynthesis of prostaglandins (PGs), in reproductively active Syrian hamster Leydig cells, and reported an inhibitory role of PGF 2α on hamster testicular steroidogenesis. In this study, we further investigated PTGS2 expression in hamster Leydig cells during sexual development and photoperiodic gonadal regression. Since PTGS2 is mostly expressed in pubertal and reproductively active adult hamsters with high circulating levels of LH and androgens, we studied the role of these hormones in the regulation/maintenance of testicular PTGS2/PGF 2α. In active hamster Leydig cells, LH/hCG and testosterone induced PTGS2 and PGF 2α production, and their actions were abolished by the antiandrogen bicalutamide (Bi). These results indicate that LH does not exert a direct effect on PG synthesis. Testosterone also stimulated phosphorylation of the mitogen-activated protein kinase isoforms 3/1 (MAPK3/1) within minutes and hours, but the testosterone metabolite dihydrotestosterone had no effect on PTGS2 and MAPK3/1. Because Bi and U0126, an inhibitor of the MAP kinase kinases 1 and 2 (MAP2K1/2), abolished testosterone actions on MAPK3/1 and PTGS2, our studies suggest that testosterone directly induces PTGS2/PGF 2α in hamster Leydig cells via androgen receptors and a non-classical mechanism that involves MAPK3/1 activation. Since PGF 2α inhibits testosterone production, it might imply the existence of a regulatory loop that is setting a brake on steroidogenesis. Thus, the androgen environment might be crucial for the regulation of testicular PG production at least during sexual development and photoperiodic variations in hamsters.Instituto Multidisciplinario de Biología Celula

    Testosterone induction of prostaglandin-endoperoxide synthase 2 expression and prostaglandin F 2α production in hamster Leydig cells

    Get PDF
    We have previously observed expression of prostaglandin-endoperoxide synthase 2 (PTGS2), the key enzyme in the biosynthesis of prostaglandins (PGs), in reproductively active Syrian hamster Leydig cells, and reported an inhibitory role of PGF 2α on hamster testicular steroidogenesis. In this study, we further investigated PTGS2 expression in hamster Leydig cells during sexual development and photoperiodic gonadal regression. Since PTGS2 is mostly expressed in pubertal and reproductively active adult hamsters with high circulating levels of LH and androgens, we studied the role of these hormones in the regulation/maintenance of testicular PTGS2/PGF 2α. In active hamster Leydig cells, LH/hCG and testosterone induced PTGS2 and PGF 2α production, and their actions were abolished by the antiandrogen bicalutamide (Bi). These results indicate that LH does not exert a direct effect on PG synthesis. Testosterone also stimulated phosphorylation of the mitogen-activated protein kinase isoforms 3/1 (MAPK3/1) within minutes and hours, but the testosterone metabolite dihydrotestosterone had no effect on PTGS2 and MAPK3/1. Because Bi and U0126, an inhibitor of the MAP kinase kinases 1 and 2 (MAP2K1/2), abolished testosterone actions on MAPK3/1 and PTGS2, our studies suggest that testosterone directly induces PTGS2/PGF 2α in hamster Leydig cells via androgen receptors and a non-classical mechanism that involves MAPK3/1 activation. Since PGF 2α inhibits testosterone production, it might imply the existence of a regulatory loop that is setting a brake on steroidogenesis. Thus, the androgen environment might be crucial for the regulation of testicular PG production at least during sexual development and photoperiodic variations in hamsters.Instituto Multidisciplinario de Biología Celula

    Cyclooxygenase-2 and prostaglandin F2α in syrian hamster leydig cells : Inhibitory role on luteinizing hormone/human chorionic gonadotropin-stimulated testosterone production

    Get PDF
    We have previously found that cyclooxygenase-2 (COX-2), a key enzyme in the biosynthesis of prostaglandins (PGs), is present in the testicular interstitial cells of infertile men, whereas it is absent in human testes with no evident morphological changes or abnormalities. To find an animal model for further investigating COX-2 and its role in testicular steroidogenesis, we screened testes from adult species ranging from mice to monkeys. By using immunohistochemical assays, we found COX-2 expression only in Leydig cells of the reproductively active (peripubertal, pubertal, and adult) seasonal breeder Syrian hamster. COX-2 expression in hamster Leydig cells was confirmed by RT-PCR. In contrast, COX-1 expression was not detected in hamster testes. Because COX-2 expression implies PG synthesis, we investigated the effect of various PGs on testosterone production and found that PGF2α stood out because it significantly reduced human chorionic gonadotropin-stimulated testosterone release from isolated hamster Leydig cells in a dose-dependent manner. This mechanism involves a decreased expression of testicular steroidogenic acute regulatory protein and 17β-hydroxysteroid dehydrogenase. Testicular concentration and content of PGF2α in reproductively active hamsters as well as production of PGF2α from isolated hamster Leydig cells were also determined. Moreover, PGF2α receptors were localized in Leydig cells of hamsters and testicular biopsies from patients with Sertoli cell only and germ arrest syndromes. Thus, in this study, we described a COX-2-initiated pathway that via PGF2α production, PGF2α receptors, steroidogenic acute regulatory protein, and 17β-hydroxysteroid dehydrogenase represents a physiological local inhibitory system of human chorionic gonadotropin-stimulated testosterone production in the Syrian hamster testes.Instituto Multidisciplinario de Biología Celula

    Cyclooxygenase-2 and prostaglandin F2α in syrian hamster leydig cells : Inhibitory role on luteinizing hormone/human chorionic gonadotropin-stimulated testosterone production

    Get PDF
    We have previously found that cyclooxygenase-2 (COX-2), a key enzyme in the biosynthesis of prostaglandins (PGs), is present in the testicular interstitial cells of infertile men, whereas it is absent in human testes with no evident morphological changes or abnormalities. To find an animal model for further investigating COX-2 and its role in testicular steroidogenesis, we screened testes from adult species ranging from mice to monkeys. By using immunohistochemical assays, we found COX-2 expression only in Leydig cells of the reproductively active (peripubertal, pubertal, and adult) seasonal breeder Syrian hamster. COX-2 expression in hamster Leydig cells was confirmed by RT-PCR. In contrast, COX-1 expression was not detected in hamster testes. Because COX-2 expression implies PG synthesis, we investigated the effect of various PGs on testosterone production and found that PGF2α stood out because it significantly reduced human chorionic gonadotropin-stimulated testosterone release from isolated hamster Leydig cells in a dose-dependent manner. This mechanism involves a decreased expression of testicular steroidogenic acute regulatory protein and 17β-hydroxysteroid dehydrogenase. Testicular concentration and content of PGF2α in reproductively active hamsters as well as production of PGF2α from isolated hamster Leydig cells were also determined. Moreover, PGF2α receptors were localized in Leydig cells of hamsters and testicular biopsies from patients with Sertoli cell only and germ arrest syndromes. Thus, in this study, we described a COX-2-initiated pathway that via PGF2α production, PGF2α receptors, steroidogenic acute regulatory protein, and 17β-hydroxysteroid dehydrogenase represents a physiological local inhibitory system of human chorionic gonadotropin-stimulated testosterone production in the Syrian hamster testes.Instituto Multidisciplinario de Biología Celula

    Direct effect of melatonin on Syrian hamster testes: melatonin subtype 1a receptors, inhibition of androgen production, and interaction with the local corticotropin-releasing hormone system

    Get PDF
    Besides the hypothalamus and pituitary, melatonin action at the testicuiar level has been recently suggested. Therefore, we investigated in the Syrian hamster, a well-characterized seasonal breeder, melatonin action on Leydig cells, testicular expression of melatonergic receptors, and possible interactions between melatonin receptors and the previously identified testicular serotoninergic and CRH systems. In isolated Leydig cells from active testes of adult hamsters kept in a long-day (14 h light, 10 h dark) photoperiod and from regressed testes of adult animals exposed to a short-day photoperiod during 16 wk (6 h light, 18 h dark), melatonin significantly reduced human chorionic gonadotropin-stimulated production of cAMP and the main androgens: testosterone and androstane-3α,17β-diol, respectively, and decreased the expression of steroidogenic acute regulatory protein, P450 side chain cleavage, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase. In Leydig cells exposed to a short-day photoperiod during 16 wk, melatonin stimulated the conversion of testosterone into 5α-reduced androgens by inducing 5α-reductase isoform 1, and controlled androstane-3α,17β-diol production by inhibiting 3α- hydroxysteroid dehydrogenase expression. Melatonin subtype (mella) receptors were detected in Leydig cells. Although the local serotonin system did not mediate melatonin action on androgen production, melatonergic effect on steroidogenesis involved the interaction between mella receptors and the inhibitory CEH system. Moreover, melatonin significantly increased CRH mRNA levels and production in hamster Leydig cells expressing CRH subtype 1 receptors. Our studies indicate that melatonin may act as a local inhibitor of human chorionic gonadotropin-stimulated cAMP and androgen production through mella receptors, down-regulation of steroidogenic acute regulatory protein, and key steroidogenic enzymes expression and its interaction with the local CRH system.Facultad de Ciencias ExactasInstituto Multidisciplinario de Biología Celula

    Expression of the TGF-beta1 system in human testicular pathologies

    Get PDF
    In non-obstructive azoospermia, histological patterns of Sertoli cell-only Syndrome (SCO) and hypospermatogenesis (H) are commonly found. In these pathologies, Leydig cell hyperplasia (LCH) is detected in some patients. Since TGF-β1 is involved in cellular proliferation/development, the aim of this work was to analyze the expression of TGF-β1, its receptors TGFBRII, TGFBRI (ALK-1 and ALK-5), and the co-receptor endoglin in human biopsies from patients with idiopathic infertilityFil: Gonzalez, Candela Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Matzkin, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Frungieri, Monica Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Terradas, Claudio. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos"Carlos G. Durand"; Argentina. Instituto Médico IPREFER; ArgentinaFil: Ponzio, Roberto . Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Puigdomenech, Elisa. Instituto Médico IPREFER;; ArgentinaFil: Levalle, Oscar. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos"Carlos G. Durand"; ArgentinaFil: Calandra, Ricardo Saul. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Gonzalez Calvar, Silvia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentin

    Testosterone induction of prostaglandin-endoperoxide synthase 2 expression and prostaglandin F 2α production in hamster Leydig cells

    Get PDF
    We have previously observed expression of prostaglandin-endoperoxide synthase 2 (PTGS2), the key enzyme in the biosynthesis of prostaglandins (PGs), in reproductively active Syrian hamster Leydig cells, and reported an inhibitory role of PGF 2α on hamster testicular steroidogenesis. In this study, we further investigated PTGS2 expression in hamster Leydig cells during sexual development and photoperiodic gonadal regression. Since PTGS2 is mostly expressed in pubertal and reproductively active adult hamsters with high circulating levels of LH and androgens, we studied the role of these hormones in the regulation/maintenance of testicular PTGS2/PGF 2α. In active hamster Leydig cells, LH/hCG and testosterone induced PTGS2 and PGF 2α production, and their actions were abolished by the antiandrogen bicalutamide (Bi). These results indicate that LH does not exert a direct effect on PG synthesis. Testosterone also stimulated phosphorylation of the mitogen-activated protein kinase isoforms 3/1 (MAPK3/1) within minutes and hours, but the testosterone metabolite dihydrotestosterone had no effect on PTGS2 and MAPK3/1. Because Bi and U0126, an inhibitor of the MAP kinase kinases 1 and 2 (MAP2K1/2), abolished testosterone actions on MAPK3/1 and PTGS2, our studies suggest that testosterone directly induces PTGS2/PGF 2α in hamster Leydig cells via androgen receptors and a non-classical mechanism that involves MAPK3/1 activation. Since PGF 2α inhibits testosterone production, it might imply the existence of a regulatory loop that is setting a brake on steroidogenesis. Thus, the androgen environment might be crucial for the regulation of testicular PG production at least during sexual development and photoperiodic variations in hamsters.Instituto Multidisciplinario de Biología Celula

    Cyclooxygenase-2 and prostaglandin F2α in syrian hamster leydig cells : Inhibitory role on luteinizing hormone/human chorionic gonadotropin-stimulated testosterone production

    Get PDF
    We have previously found that cyclooxygenase-2 (COX-2), a key enzyme in the biosynthesis of prostaglandins (PGs), is present in the testicular interstitial cells of infertile men, whereas it is absent in human testes with no evident morphological changes or abnormalities. To find an animal model for further investigating COX-2 and its role in testicular steroidogenesis, we screened testes from adult species ranging from mice to monkeys. By using immunohistochemical assays, we found COX-2 expression only in Leydig cells of the reproductively active (peripubertal, pubertal, and adult) seasonal breeder Syrian hamster. COX-2 expression in hamster Leydig cells was confirmed by RT-PCR. In contrast, COX-1 expression was not detected in hamster testes. Because COX-2 expression implies PG synthesis, we investigated the effect of various PGs on testosterone production and found that PGF2α stood out because it significantly reduced human chorionic gonadotropin-stimulated testosterone release from isolated hamster Leydig cells in a dose-dependent manner. This mechanism involves a decreased expression of testicular steroidogenic acute regulatory protein and 17β-hydroxysteroid dehydrogenase. Testicular concentration and content of PGF2α in reproductively active hamsters as well as production of PGF2α from isolated hamster Leydig cells were also determined. Moreover, PGF2α receptors were localized in Leydig cells of hamsters and testicular biopsies from patients with Sertoli cell only and germ arrest syndromes. Thus, in this study, we described a COX-2-initiated pathway that via PGF2α production, PGF2α receptors, steroidogenic acute regulatory protein, and 17β-hydroxysteroid dehydrogenase represents a physiological local inhibitory system of human chorionic gonadotropin-stimulated testosterone production in the Syrian hamster testes.Instituto Multidisciplinario de Biología Celula

    Direct effect of melatonin on Syrian hamster testes: melatonin subtype 1a receptors, inhibition of androgen production, and interaction with the local corticotropin-releasing hormone system

    Get PDF
    Besides the hypothalamus and pituitary, melatonin action at the testicuiar level has been recently suggested. Therefore, we investigated in the Syrian hamster, a well-characterized seasonal breeder, melatonin action on Leydig cells, testicular expression of melatonergic receptors, and possible interactions between melatonin receptors and the previously identified testicular serotoninergic and CRH systems. In isolated Leydig cells from active testes of adult hamsters kept in a long-day (14 h light, 10 h dark) photoperiod and from regressed testes of adult animals exposed to a short-day photoperiod during 16 wk (6 h light, 18 h dark), melatonin significantly reduced human chorionic gonadotropin-stimulated production of cAMP and the main androgens: testosterone and androstane-3α,17β-diol, respectively, and decreased the expression of steroidogenic acute regulatory protein, P450 side chain cleavage, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase. In Leydig cells exposed to a short-day photoperiod during 16 wk, melatonin stimulated the conversion of testosterone into 5α-reduced androgens by inducing 5α-reductase isoform 1, and controlled androstane-3α,17β-diol production by inhibiting 3α- hydroxysteroid dehydrogenase expression. Melatonin subtype (mella) receptors were detected in Leydig cells. Although the local serotonin system did not mediate melatonin action on androgen production, melatonergic effect on steroidogenesis involved the interaction between mella receptors and the inhibitory CEH system. Moreover, melatonin significantly increased CRH mRNA levels and production in hamster Leydig cells expressing CRH subtype 1 receptors. Our studies indicate that melatonin may act as a local inhibitor of human chorionic gonadotropin-stimulated cAMP and androgen production through mella receptors, down-regulation of steroidogenic acute regulatory protein, and key steroidogenic enzymes expression and its interaction with the local CRH system.Facultad de Ciencias ExactasInstituto Multidisciplinario de Biología Celula
    corecore