9 research outputs found

    The Gaia-ESO Public Spectroscopic Survey: Implementation, data products, open cluster survey, science, and legacy

    Get PDF
    Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come

    The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products

    Get PDF
    Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products

    Chandra Galactic Bulge Survey

    No full text
    Each image fits file (pobjXXX.fits) has 8 extensions, each corresponding to one of the 8 CCDs in the mosaic instrument. From these images, two data products are created: the single-filter object catalogues, containing the positions, fluxes etc. of all sources on the respective detectors. These single-filter catalogues are then combined to create merged 3-filter catalogues, where pointers are incorporated to point back to the original single-filter catalogue positions. The file 'mosaicobs.dat' gives an overview of which field corresponds to which catalogue file. Below is a description of the entries in both sets of catalogues. Indicated between square brackets are the units (if applicable). (12 data files)

    Chandra Galactic Bulge Survey

    No full text
    Each image fits file (pobjXXX.fits) has 8 extensions, each corresponding to one of the 8 CCDs in the mosaic instrument. From these images, two data products are created: the single-filter object catalogues, containing the positions, fluxes etc. of all sources on the respective detectors. These single-filter catalogues are then combined to create merged 3-filter catalogues, where pointers are incorporated to point back to the original single-filter catalogue positions. The file 'mosaicobs.dat' gives an overview of which field corresponds to which catalogue file. Below is a description of the entries in both sets of catalogues. Indicated between square brackets are the units (if applicable). (12 data files)

    The European Large-Area ISO Survey (ELAIS): The final band-merged catalogue

    No full text
    We present the final band-merged European Large-Area ISO Survey (ELAIS) Catalogue at 6.7, 15, 90 and 175 μm, and the associated data at U, g′, r′, i′, Z, J, H, K and 20 cm. The origin of the survey, infrared and radio observations, data-reduction and optical identifications are briefly reviewed, and a summary of the area covered and the completeness limit for each infrared band is given. A detailed discussion of the band-merging and optical association strategy is given. The total Catalogue consists of 3762 sources. 23 per cent of the 15-μm sources and 75 per cent of the 6.7-μm sources are stars. For extragalactic sources observed in three or more infrared bands, colour-colour diagrams are presented and discussed in terms of the contributing infrared populations. Spectral energy distributions (SEDs) are shown for selected sources and compared with cirrus, M82 and Arp220 starburst, and active galactic nuclei (AGN) dust torus models. Spectroscopic redshifts are tabulated, where available. For the N1 and N2 areas, the Isaac Newton Telescope ugriz Wide Field Survey permits photometric redshifts to be estimated for galaxies and quasars. These agree well with the spectroscopic redshifts, within the uncertainty of the photometric method [∼ 10 per cent in (1 + z) for galaxies]. The redshift distribution is given for selected ELAIS bands and colour-redshift diagrams are discussed. There is a high proportion of ultraluminous infrared galaxies (log 10 of 1-1000 μm luminosity L ir > 12.22) in the ELAIS Catalogue (14 per cent of 15-μm galaxies with known z), many with Arp220-like SEDs. 10 per cent of the 15-μm sources are genuine optically blank fields to r′ = 24: these must have very high infrared-to-optical ratios and probably have z > 0.6, so are high-luminosity dusty starbursts or Type 2 AGN. Nine hyperluminous infrared galaxies (L ir > 13.22) and nine extremely red objects (EROs) (r - K > 6) are found in the survey. The latter are interpreted as ultraluminous dusty infrared galaxies at z ∼ 1. The large numbers of ultraluminous galaxies imply very strong evolution in the star formation rate between z = 0 and 1. There is also a surprisingly large population of luminous (L ir > 11.5), cool (cirrus-type SEDs) galaxies, with L ir - L opt > 0, implying A v > 1
    corecore