10 research outputs found

    Inferring the geolocation of tweets at a fine-grained level

    Get PDF
    Recently, the use of Twitter data has become important for a wide range of real-time applications, including real-time event detection, topic detection or disaster and emergency management. These applications require to know the precise location of the tweets for their analysis. However, approximately 1% of the tweets are finely-grained geotagged, which remains insufficient for such applications. To overcome this limitation, predicting the location of non-geotagged tweets, while challenging, can increase the sample of geotagged data to support the applications mentioned above. Nevertheless, existing approaches on tweet geolocalisation are mostly focusing on the geolocation of tweets at a coarse-grained level of granularity (i.e., city or country level). Thus, geolocalising tweets at a fine-grained level (i.e., street or building level) has arisen as a newly open research problem. In this thesis, we investigate the problem of inferring the geolocation of non-geotagged tweets at a fine-grained level of granularity (i.e., at most 1 km error distance). In particular, we aim to predict the geolocation where a given tweet was generated using its text as a source of evidence. This thesis states that the geolocalisation of non-geotagged tweets at a fine-grained level can be achieved by exploiting the characteristics of the 1\% of already available individual finely-grained geotagged tweets provided by the Twitter stream. We evaluate the state-of-the-art, derive insights on their issues and propose an evolution of techniques to achieve the geolocalisation of tweets at a fine-grained level. First, we explore the existing approaches in the literature for tweet geolocalisation and derive insights on the problems they exhibit when adapted to work at a fine-grained level. To overcome these problems, we propose a new approach that ranks individual geotagged tweets based on their content similarity to a given non-geotagged. Our experimental results show significant improvements over previous approaches. Next, we explore the predictability of the location of a tweet at a fine-grained level in order to reduce the average error distance of the predictions. We postulate that to obtain a fine-grained prediction a correlation between similarity and geographical distance should exist, and define the boundaries were fine-grained predictions can be achieved. To do that, we incorporate a majority voting algorithm to the ranking approach that assesses if such correlation exists by exploiting the geographical evidence encoded within the Top-N most similar geotagged tweets in the ranking. We report experimental results and demonstrate that by considering this geographical evidence, we can reduce the average error distance, but with a cost in coverage (the number of tweets for which our approach can find a fine-grained geolocation). Furthermore, we investigate whether the quality of the ranking of the Top-N geotagged tweets affects the effectiveness of fine-grained geolocalisation, and propose a new approach to improve the ranking. To this end, we adopt a learning to rank approach that re-ranks geotagged tweets based on their geographical proximity to a given non-geotagged tweet. We test different learning to rank algorithms and propose multiple features to model fine-grained geolocalisation. Moreover, we investigate the best performing combination of features for fine-grained geolocalisation. This thesis also demonstrates the applicability and generalisation of our fine-grained geolocalisation approaches in a practical scenario related to a traffic incident detection task. We show the effectiveness of using new geolocalised incident-related tweets in detecting the geolocation of real incidents reports, and demonstrate that we can improve the overall performance of the traffic incident detection task by enhancing the already available geotagged tweets with new tweets that were geolocalised using our approach. The key contribution of this thesis is the development of effective approaches for geolocalising tweets at a fine-grained level. The thesis provides insights on the main challenges for achieving the fine-grained geolocalisation derived from exhaustive experiments over a ground truth of geotagged tweets gathered from two different cities. Additionally, we demonstrate its effectiveness in a traffic incident detection task by geolocalising new incident-related tweets using our fine-grained geolocalisation approaches

    Learning to geolocalise Tweets at a fine-grained level

    Get PDF
    Fine-grained geolocation of tweets has become an important feature for reliably performing a wide range of tasks such as real-time event detection, topic detection or disaster and emergency analysis. Recent work adopted a ranking approach to return a predicted location based on content-based similarity to already available individual geotagged tweets. However, this work made use of the IDF weighting model to compute the ranking, which can diminish the quality of the Top-N retrieved tweets. In this work, we adopt a learning to rank approach towards improving the effectiveness of the ranking and increasing the accuracy of fine-grained geolocalisation. To this end we propose a set of features extracted from pairs of geotagged tweets generated within the same fine-grained geographical area (squared areas of size 1 km). Using geotagged tweets from two cities (Chicago and New York, USA), our experimental results show that our learning to rank approach significantly outperforms previous work based on IDF ranking, and improves accuracy of tweet geolocalisation at a fine-grained level

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    On fine-grained geolocalisation of tweets

    Get PDF
    Recently, the geolocalisation of tweets has become an important feature for a wide range of tasks in Information Retrieval and other domains, such as real-time event detection, topic detection or disaster and emergency analysis. However, the number of relevant geo-tagged tweets available remains insuffcient to reliably perform such tasks. Thus, predicting the location of non-geotagged tweets is an important yet challenging task, which can increase the sample of geo-tagged data and help to a wide range of tasks. In this paper, we propose a location inference method that utilises a ranking approach combined with a majority voting of tweets weighted based on the credibility of its source (Twitter user). Using geo-tagged tweets from two cities, Chicago and New York (USA), our experimental results demonstrate that our method (statistically) significantly outperforms our baselines in terms of accuracy, and error distance, in both cities, with the cost of decrease in recall

    On fine-grained geolocalisation of tweets and real-time traffic incident detection

    Get PDF
    Recently, geolocalisation of tweets has become important for a wide range of real-time applications, including real-time event detection, topic detection or disaster and emergency analysis. However, the number of relevant geotagged tweets available to enable such tasks remains insufficient. To overcome this limitation, predicting the location of non-geotagged tweets, while challenging, can increase the sample of geotagged data and has consequences for a wide range of applications. In this paper, we propose a location inference method that utilises a ranking approach combined with a majority voting of tweets, where each vote is weighted based on evidence gathered from the ranking. Using geotagged tweets from two cities, Chicago and New York (USA), our experimental results demonstrate that our method (statistically) significantly outperforms state-of-the-art baselines in terms of accuracy and error distance, in both cities, with the cost of decreased coverage. Finally, we investigated the applicability of our method in a real-time scenario by means of a traffic incident detection task. Our analysis shows that our fine-grained geolocalisation method can overcome the limitations of geotagged tweets and precisely map incident-related tweets at the real location of the incident

    Global urban environmental change drives adaptation in white clover

    No full text
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    The Changing Landscape for Stroke\ua0Prevention in AF

    No full text

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    No full text
    International audienceThe aim of this study was to estimate the incidence of COVID-19 disease in the French national population of dialysis patients, their course of illness and to identify the risk factors associated with mortality. Our study included all patients on dialysis recorded in the French REIN Registry in April 2020. Clinical characteristics at last follow-up and the evolution of COVID-19 illness severity over time were recorded for diagnosed cases (either suspicious clinical symptoms, characteristic signs on the chest scan or a positive reverse transcription polymerase chain reaction) for SARS-CoV-2. A total of 1,621 infected patients were reported on the REIN registry from March 16th, 2020 to May 4th, 2020. Of these, 344 died. The prevalence of COVID-19 patients varied from less than 1% to 10% between regions. The probability of being a case was higher in males, patients with diabetes, those in need of assistance for transfer or treated at a self-care unit. Dialysis at home was associated with a lower probability of being infected as was being a smoker, a former smoker, having an active malignancy, or peripheral vascular disease. Mortality in diagnosed cases (21%) was associated with the same causes as in the general population. Higher age, hypoalbuminemia and the presence of an ischemic heart disease were statistically independently associated with a higher risk of death. Being treated at a selfcare unit was associated with a lower risk. Thus, our study showed a relatively low frequency of COVID-19 among dialysis patients contrary to what might have been assumed

    The Changing Landscape for Stroke Prevention in AF

    No full text

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    No full text
    corecore