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ABSTRACT

Fine-grained geolocation of tweets has become an important fea-

ture for reliably performing a wide range of tasks such as real-time

event detection, topic detection or disaster and emergency analysis.

Recent work adopted a ranking approach to return a predicted

location based on content-based similarity to already available in-

dividual geotagged tweets. However, this work made use of the

IDF weighting model to compute the ranking, which can diminish

the quality of the Top-N retrieved tweets. In this work, we adopt a

learning to rank approach towards improving the efectiveness of

the ranking and increasing the accuracy of ine-grained geolocalisa-

tion. To this end, we propose a set of features extracted from pairs

of geotagged tweets generated within the same ine-grained geo-

graphical area (squared areas of size 1 km). Using geotagged tweets

from two cities (Chicago and New York, USA), our experimental

results show that our learning to rank approach signiicantly out-

performs previous work based on IDF ranking, and improves the

accuracy of tweet geolocalisation at a ine-grained level.
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1 INTRODUCTION

The ever-increasing activity on Twitter has generated abundant

information about the location of users in the real world at a ine-

grained level (i.e. at a street, building or neighbourhood level) [19].

Given the richness of such data, new opportunities have emerged for

a broad range of Information Retrieval (IR) applications such as real-

time event detection [1] or disaster and emergency analysis [14].

However, only a very small sample of tweets in the Twitter stream

(1% to 2%) contain geographical information [9]. Thus, inferring the

geolocalisation of non-geotagged tweets has become an important

yet challenging task. In this paper, we propose a novel approach

for ine-grained geolocalisation of non-geotagged tweets, where a

ine-grained level is deined as squared areas of size 1 km.
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Recently, Gonzalez Paule et al. [8] proposed to rank individual

geotagged tweets using an IDF weighting model and combine ev-

idence from the Top-N tweets using a weighted majority voting

algorithm. However, considering only IDF weighting to perform the

ranking can reduce the quality of the Top-N tweets. In this paper,

we aim to improve the accuracy of geolocalisation by improving the

quality of the Top-N ranked tweets. To this end, we adopt a learning

to rank approach [4] to tackle ine-grained geolocalisation of tweets

and propose a set of features to rank individual geotagged tweets

based on their geographical proximity to a given non-geotagged

tweet.

In particular, the contributions of this paper are two-fold. First,

we propose a learning to rank approach for the ine-grained tweet

geolocalisation problem. Also, we propose multiple types of fea-

tures extracted from pairs of geotagged tweets located in the same

ine-grained geographical area. Second, we evaluate our proposed

approach using a ground truth of geotagged tweets gathered from

two diferent cities and investigate the best combination of features.

2 BACKGROUND

The problem of ine-grained geolocalisation has been explored

recently in the literature. Previous work followed the approach

of dividing the geographical space into a set of predeined areas

of a given size [11, 15]. The authors aggregated the texts of the

geotagged tweets within that areas and computed the probability

of a non-geotagged tweet to be generated in an area, thus returning

the most likely location. Kinsella et al. [11] reduced the granularity

of the areas from country level to the postal code level. However,

their results showed a signiicant decrease in accuracy. To improve

the performance, Paraskevopoulos et al. [15] reduced the size of

the areas to squares of side length 1 km. Nonetheless, the drawback

of these works is that they aggregated the texts of the geotagged

tweets to represent an area, which is noisy and afects accuracy.

To tackle this drawback, more recently Gonzalez Paule et al. [8]

proposed to treat each geotagged tweet individually and rank them

by their content-similarity to a given non-geotagged tweet. Then,

a weighted majority voting algorithm is used to select the most

common area ± squares of size 1 km associated to each tweet ±

within the Top-N most similar geotagged tweets. The majority

voting is weighted using information about the credibility of the

users that posted the tweets in the rank. This approach increased

signiicantly the accuracy of geolocalisation. However, only two

sources of evidence were used to perform geolocalisation: content-

based similarity and user information. In contrast to Gonzalez Paule

et al. [8], we aim to increase the accuracy of geolocalisation by

adopting a learning to rank approach that learns from multiple

tweet features to obtain a higher quality Top-N ranking of most

similar geotagged tweets that are then fed into the majority voting

algorithm.

The idea of using machine learning to learn more efective rank-

ing functions (learning to rank) has been widely used in IR [12].
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Table 1: Features computed in this paper for ine-grained geolocalisation of tweets for query-tweet and doc-tweet.

Features Description Total

Query Features and Document Features

Hashtags Number of hashtags in the text. 2

Mentions Number of mentions in the text. 2

Urls Number of urls in the text. 2

Entities Number of entities in the text. 2

Verbs Number of verbs in the text. 2

Adverbs Number of adverbs in the text. 2

Adjectives Number of adjectives in the text. 2

Checkin Whether the tweet is a Foursquare checkin. 2

Hour The hour of the day (0 to 24h) the tweet was posted. 2

Weekday The day of the week (Monday to Sunday) the tweet was posted. 2

User Ratio User credibility ratio [8] 2

Query-dependent (relation between query-tweet and doc-tweet)

Hashtags Shared number of Hashtags. 1

Mentions Shared number of Mentions 1

User Both tweets belong to the same user. 1

Hour Both tweets posted the same hour of the day (0h to 24h). 1

Weekday Both tweets posted the same day of the week (Monday to Sunday. 1

Cosine Similarity Cosine similarity [13] between the texts of qi and di . 1

Total Features 28

Learning to rank has been applied to solve retrieval tasks using

web documents or large text documents. However, the ranking of

tweets is challenging due to the inherent characteristics of Twitter

posts ± short text and informal language. This issue has been widely

studied for social media search tasks, where learning to rank has

been demonstrated to beneit efectiveness [4]. In this paper, we

adopt learning to rank techniques to tackle the tweet ine-grained

geolocalisation problem. We re-rank geotagged tweets based on

their geographical proximity to a given non-geotagged tweet and

propose a set of features for the ine-grained geolocalisation task.

3 LEARNING TO GEOLOCALISE

The aim of this paper is to improve the accuracy of ine-grained ge-

olocalisation by improving the ranking of the Top-N most content-

based similar geotagged tweets (denoted as a doc-tweet) to a given

non-geotagged tweet (denoted as a query-tweet). To this end, we

aim to learn a ranking function to re-rank doc-tweets based on their

geographical proximity to the query-tweet. As our ranking function,

we empirically select LambdaMART [17] as the best performing

one in preliminary experiments, detailed in Section 4.2.

To train the ranking function, we use the training set described

in Section 4. In order to label pairs of geotagged tweets in the

training set, we irst divide the geographical space of interest into

a grid of ine-grained squared areas of size 1 km and associate each

geotagged query-tweet and doc-tweet to their corresponding area

based on their location. Then, pairs of tweets posted in the same

area (i.e. distance 1 km or less) are labelled as positive. On the other

hand, pairs of tweets posted in diferent areas (i.e. distance more

than 1 km) are labelled as negative.

After the training process, we use our learned model to re-rank

doc-tweets based on their probability of being posted in the same

area as the query-tweet. Finally, inspired by previous work [8], we

apply a majority voting algorithm to select the predicted location -

a squared area of size 1km - within the Top-N doc-tweets.

We propose a set of features to model ine-grained tweet geolo-

calisation. In total, we exploit 28 features (see Table 1) grouped into

three categories: content quality features, geographical features and

similarity features. We compute document features extracted from

the doc-tweet and query features extracted from the query-tweet

(content and geographical features), as well as query-dependent

features (similarity features) to model the relationship between

query-tweets and doc-tweets.

Content Quality Features. The higher the quality of a tweet

is, the more valuable information it provides. Previous research

has shown the usefulness of content quality features of a tweet

for learning to rank [5]. Inspired by these works, we modelled the

quality of a tweet by extracting indicators of the richness of its text.

First, we exploit characteristics of the Twitter social network by

counting the number of hashtags, number of mentions and number

of URLs of the tweet. Second, we utilise natural language techniques

to count the number of entities, verbs, adjectives, nouns and adverbs

in the text.

Geospeciic Features. In addition to previous state-of-the-art

features, we added new features as signals for geolocalisation by

extracting geospeciic information contained within the query-

tweet and the doc-tweet. First, we check if the tweet corresponds

to a Foursquare check-in. Foursquare1 is a social media network in

which users can do check-ins at venues when they visit them. Users

have the option of generating a tweet sharing this information with

their followers along with the geolocation of the venue. Second,

following Gonzalez et al. [8] approach, we compute a credibility

score for the doc-tweet which represents the posting activity of the

user that generated the tweet. A doc-tweet posted by a user with a

high score is more likely to be representative of a geolocalisation.

The credibility score is based on the ratio of tweets posted by a user

at a ine-grained distance (1 km) to other similar tweets (Top-N).

We utilise the training and validation sets described in Section 4 to

compute the score, using the Top-N tweets with values of N of 3, 5,

7 and 9.

Finally, diferent types of events tend to occur at diferent hours

of the day or days of the week. For instance, people usually visit

clubs at nights and weekends. Thus, if two tweets were posted in

the same time frame, their content is likely to be related to the same

type of events that are recurrent in the same location.

Similarity Features. Query-dependent features aims to model

the relationship between the query-tweet and the doc-tweet. These

set of features are presented in Table 1. The intuition behind these

features is that when people visit a certain location, they make use

of social media to describe their surroundings or events occurring

1http:⁄⁄www.foursquare.com

http://www.foursquare.com


in the location. This means that many of the generated tweets will

share the same characteristics. Therefore, the similarities between

the two tweets are a strong indicator of their geolocalisation. To

model the similarity between the query-tweet and the doc-tweet,

we irst compute their cosine similarity [13]. Second, we count the

number of common entities, mentions and hashtags, and check if

both tweets were posted by the same user. Finally, we calculate

if the query-tweet and the doc-tweet were generated in the same

hour of the day or on the same day of the week.

4 EXPERIMENTS

In this section, we describe our experiments for evaluating our learn-

ing to rank approach for ine-grained geolocalisation of tweets.

Our datasets consist of a ground truth sample of English geo-

tagged tweets2 collected during March 2016 and located in Chicago

(132,751 geotagged tweets) andNewYork (153,144 geotagged tweets),

USA. To evaluate our approach, we divide each dataset into three

subsets. First, we consider the geotagged tweets posted during

the irst three weeks of March as our document set, resulting of

100,176 for Chicago and 111,292 for New York. Second, we ran-

domly divide the last week of March into background-queries set

and testing-queries set to ensure the same characteristics. The

background-queries set consists of 16,262 geotagged tweets for

Chicago, and 20,982 geotagged tweets for New York. Finally, the

testing-queries set contains 16,313 geotagged tweets for Chicago

and 20,870 geotagged tweets for New York

Next, we create our training set for learning to rank by perform-

ing a retrieval task (using IDF weighting model) with the geotagged

tweets in the background-queries set as query-tweets, and the geo-

tagged tweets in the documents set as doc-tweets. We use the

generated pairs of query-tweet and doc-tweet as a training set to

learn our learning to rank algorithm. We then perform the same

task but using the query-tweets in the testing-queries set to create

the testing set for evaluating our learning to rank approach.

Lastly, we index every geotagged tweet in the documents set

using the Lucene platform3, and pre-process them by removing

stopwords and applying Porter stemming. Moreover, we preserve

retweets, usernames and hashtags as tokens in the dataset. The

reason behind preserving retweets is that when a user retweets a

content, the geolocation of the original tweets is not necessarily

preserved. Moreover, the similarity between a tweet and its retweet

is high, therefore we can assign the location of the original tweet

to the retweet.

4.1 Metrics.

We report the following metrics for evaluating the efectiveness of

our approach:

Average Error distance (km): We compute the distance on

Earth (Haversine formula [16]) between the predicted location and

the real coordinates of the tweet in our ground truth. As the pre-

dicted location is an area (see Section 4.2), the distance between the

ground truth coordinate and the centroid of the area is calculated.

Lower values indicates better performance.

2Geotagged and non-geotagged tweets share the same characteristics [10].
3https:⁄⁄lucene.apache.org⁄

Accuracy@1km:We calculate whether the centroid of the pre-

dicted area lies within a radius of 1 km from the real location of a

tweet. Higher values indicated better performance.

Coverage: We consider Coverage as the fraction of tweets in

the test set from which our approach inds a geolocation regardless

of the distance error. Higher values indicated better performance.

4.2 Models

In total, we implement ive approaches (explained in detail below),

including a state-of-the-art model as the baseline. Following previ-

ous works deinition of ine-grained level [8, 15] we create a grid

structure of squared areas with a side length of 1 km (denoted by

łine-grained gridž), which is utilised in all the models.

Baseline: The baseline model is an implementation of the work

by Gonzalez Paule et al. [8]. This approach uses an IR weighting

model to retrieve the Top-N most content-based similar tweets

to a given non-geotagged tweet. Finally, the approach applies a

weighting majority voting algorithm to obtain the most voted ine-

grained location. The votes are given by the tweets within the

Top-N rank, which are associated with their corresponding squared

area of the ine-grained grid described above. Moreover, each vote

is weighted by a user credibility score that is associated to the user

that generated the tweet. This score is calculated based on the ratio

of tweets posted by the user that are highly similar to other tweets

posted at 1 km distance.

Then, we index and preprocess each of the geotagged tweets

(see Section 4) as a single document. After indexing the tweets, we

generate the Top-N rank of geotagged tweets using IDF weighting

model and apply the weighted majority voting algorithm to obtain

the inal predicted location. In our experiments, we consider the

Top-3, -5, -7 and -9 for evaluation.

L2Geo:Our proposed learning to geolocalise approach, described

in Section 3. We empirically select the best performing conigura-

tion for our approach. We experiment using MART [7], RankNet

[3], RankBoost [6], AdaRank [18], LambdaMART [17] and Random

Forests [2] as ranking functions. Also, we conigure the ranking

functions to re-rank the Top-10 and Top-50 geotagged tweets, and

optimise NDCG@N with N with values of 3, 5, 7, 10 during the

training process. Finally, LambdaMART [17] conigured to optimise

NDCG@3, and re-ranking the Top-10 retrieved tweets showed to

be the best performing coniguration. Due to lack of space, we do

not report detailed results of these experiments in this paper and

will be considered in future work.

Additionally, in order to assess the best set of features for ine-

grained geolocalisation, we built four diferent versions of our ap-

proach that use diferent combinations of the features described in

Section 3: L2Geo which incorporates all the features, L2Geo_Sim

which uses only the set of similarity features, L2Geo_Content

which utilises only the set of content quality features andL2Geo_Geo

which uses only the set of geographical features.

5 EXPERIMENTAL RESULTS

Table 2 presents average error distance (A_Err_km), accuracy at 1km

(Acc@1km) and Coverage for diferent conigurations (Conig) of

our learning to rank approaches (L2Geo, L2Geo_Sim, L2Geo_Content

and L2Geo_Geo) against the baseline model described in Section 4.

https://lucene.apache.org/


Table 2: Results for Chicago dataset (left) and New York dataset (right). The tables present the metrics described in Section 4.1 for our proposed approach (L2Geo)
against our Baselines, using the Top-N (Top-N) elements in the rank. Signiicant diferences w.r.t our best Baseline (Baseline_Top-9) are denoted by ∗ (p<0.01).

Chicago New York

Model Conig A_Err_km↓ Acc@1km↑ Coverage↑ A_Err_km↓ Acc@1km↑ Coverage↑

Baseline Top-3 3.849 61.17% 83.28% 4.234 52.33% 75.84%

Baseline Top-5 3.669 62.78% 79.08% 4.362 51.98% 75.09%

Baseline Top-7 3.170 66.82% 70.41% 4.008 54.81% 67.83%

Baseline Top-9 2.576 71.29% 62.28% 3.476 59.23% 59.94%

L2Geo Top-3 0.939∗ 92.92%∗ 38.12%∗ 1.373∗ 87.18%∗ 28.27%∗

L2Geo Top-5 0.671∗ 95.38%∗ 28.18%∗ 0.862∗ 93.43%∗ 21.65%∗

L2Geo Top-7 0.557∗ 96.33%∗ 23.22%∗ 0.679∗ 95.61%∗ 18.68%∗

L2Geo Top-9 0.483∗ 96.73%∗ 19.72%∗ 0.622∗ 96.64%∗ 16.53%∗

L2Geo_Sim Top-3 1.207∗ 89.73%∗ 32.29%∗ 1.198∗ 88.7%∗ 26.99%∗

L2Geo_Sim Top-5 0.759∗ 94.18%∗ 25.27%∗ 0.824∗ 93.58%∗ 20.69%∗

L2Geo_Sim Top-7 0.593∗ 95.84%∗ 21.94%∗ 0.703∗ 95.28%∗ 18.09%∗

L2Geo_Sim Top-9 0.503∗ 96.70%∗ 19.49%∗ 0.634∗ 96.34%∗ 16.22%∗

L2Geo_Content Top-3 1.297∗ 88.71%∗ 32.73%∗ 1.342∗ 86.85%∗ 26.35%∗

L2Geo_Content Top-5 0.828∗ 93.52%∗ 24.97%∗ 0.911∗ 92.99%∗ 20.56%∗

L2Geo_Content Top-7 0.670∗ 95.42%∗ 21.41%∗ 0.762∗ 95.04%∗ 18.26%∗

L2Geo_Content Top-9 0.491∗ 96.73%∗ 19.15%∗ 0.669∗ 96.35%∗ 16.39%∗

L2Geo_Geo Top-3 1.333∗ 88.86%∗ 31.52%∗ 1.538∗ 86.32%∗ 27.74%∗

L2Geo_Geo Top-5 0.779∗ 94.00%∗ 24.31%∗ 0.926∗ 93.06%∗ 21.34%∗

L2Geo_Geo Top-7 0.579∗ 95.87%∗ 20.95%∗ 0.778∗ 95.19%∗ 18.43%∗

L2Geo_Geo Top-9 0.489∗ 96.74%∗ 18.99%∗ 0.668∗ 96.28%∗ 16.51%∗

We observe that our learning to rank approach, in both datasets,

outperforms the baseline in terms of accuracy and error distance,

but with the cost of a decrease in coverage. In particular, compared

to the best performing baseline (Baseline at Top-9) our approach

(L2Geo at Top-3) increases accuracy from 71.29% to 92.92% in the

Chicago dataset, and from 59.23% to 87.18% in the New York dataset.

Additionally, the average error distance is reduced from 2.576 km

to 0.939 km and 3.476 km to 1.373 km for Chicago and New York

respectively. However, coverage is reduced from 62.28% to 38.12%

in Chicago, and 59.94% to 28.27% in New York.

Upon analysing the above-mentioned table, we observe that

L2Geo, which combines all the proposed features, exhibits improve-

ments over the rest of the learning to rank models that use subsets

of features. Additionally, comparing our learning to rank models

that incorporate diferent subsets of features, the efectiveness of

L2Geo_Sim shows that Similarity features are the most informative

type of features compared to L2Geo_Content and L2Geo_Geo

6 CONCLUSIONS

In this work, we tackled the ine-grained tweet geolocalisation

task. We proposed a set of features for modelling the task and in-

vestigated their efectiveness when integrated into a learning to

rank technique combined with a majority voting algorithm. To

demonstrate the efectiveness of our approach, we conducted an ex-

periment on two datasets of English geotagged tweets. Our results

showed improvements in terms of accuracy of geolocalisation using

our learning to rank approach (L2Geo) with respect to the baseline,

utilising all the proposed features. Additionally, we observed that

compared to other types of features, Similarity features (L2Geo_Sim)

are the most informative. Future work will examine features indi-

vidually and investigate the best combination of them, as well as

explore other possible features for ine-grained geolocalisation.
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