59,991 research outputs found

    CP violation with a dynamical Higgs

    Get PDF
    We determine the complete set of independent gauge and gauge-Higgs CP-odd effective operators for the generic case of a dynamical Higgs, up to four derivatives in the chiral expansion. The relation with the linear basis of dimension six CP-odd operators is clarified. Phenomenological applications include bounds inferred from electric dipole moment limits, and from present and future collider data on triple gauge coupling measurements and Higgs signals.Comment: 41 pages, 3 figures; V2: citations added, typos corrected, version published on JHE

    A phenomenological analysis of azimuthal asymmetries in unpolarized semi-inclusive deep inelastic scattering

    Get PDF
    We present a phenomenological analysis of the cos-phi and cos-2phi asymmetries in unpolarized semi-inclusive deep inelastic scattering, based on the recent multidimensional data released by the COMPASS and HERMES Collaborations. In the TMD framework, valid at relatively low transverse momenta, these asymmetries arise from intrinsic transverse momentum and transverse spin effects, and from their correlations. The role of the Cahn and Boer-Mulders effects in both azimuthal moments is explored up to order 1/Q. As the kinematics of the present experiments is dominated by the low-Q^2 region, higher-twist contributions turn out to be important, affecting the results of our fits.Comment: 18 pages, 5 figures, one paragraph added at the end of Section IV, one reference added. PRD versio

    Unpolarised Transverse Momentum Dependent Distribution and Fragmentation Functions from SIDIS Multiplicities

    Get PDF
    The unpolarised transverse momentum dependent distribution and fragmentation functions are extracted from HERMES and COMPASS experimental measurements of SIDIS multiplicities for charged hadron production. The data are grouped into independent bins of the kinematical variables, in which the TMD factorisation is expected to hold. A simple factorised functional form of the TMDs is adopted, with a Gaussian dependence on the intrinsic transverse momentum, which turns out to be quite adequate in shape. HERMES data do not need any normalisation correction, while fits of the COMPASS data much improve with a yy-dependent overall normalisation factor. A comparison of the extracted TMDs with previous EMC and JLab data confirms the adequacy of the simple Gaussian distributions. The possible role of the TMD evolution is briefly considered.Comment: 21 pages, 16 figure

    A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes

    Get PDF
    We study the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, qTq_T. In order to describe it over a wide region of qTq_T, soft gluon resummation has to be performed. Here we will use the original Collins-Soper-Sterman (CSS) formalism; however, the same procedure would hold within the improved Transverse Momentum Dependent (TMD) framework. We study the matching between the region where fixed order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. In particular, the non-perturbative component of the resummed cross section turns out to play a crucial role and should not be overlooked even at relatively high energies. Moreover, the perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.Comment: Two references and an appendix added, 22 pages, 11 figure

    Disentangling a dynamical Higgs

    Get PDF
    The pattern of deviations from Standard Model predictions and couplings is different for theories of new physics based on a non-linear realization of the SU(2)L×U(1)YSU(2)_L\times U(1)_Y gauge symmetry breaking and those assuming a linear realization. We clarify this issue in a model-independent way via its effective Lagrangian formulation in the presence of a light Higgs particle, up to first order in the expansions: dimension-six operators for the linear expansion and four derivatives for the non-linear one. Complete sets of pure gauge and gauge-Higgs operators are considered, implementing the renormalization procedure and deriving the Feynman rules for the non-linear expansion. We establish the theoretical relation and the differences in physics impact between the two expansions. Promising discriminating signals include the decorrelation in the non-linear case of signals correlated in the linear one: some pure gauge versus gauge-Higgs couplings and also between couplings with the same number of Higgs legs. Furthermore, anomalous signals expected at first order in the non-linear realization may appear only at higher orders of the linear one, and vice versa. We analyze in detail the impact of both type of discriminating signals on LHC physics.Comment: Version published in JHE
    • …
    corecore