4,289 research outputs found

    Modeling state-selective photodetachment in cold ion traps: Rotational state "crowding" in small anions

    Get PDF
    Using accurate ab initio calculations of the interaction forces, we employ a quantum mechanical description of the collisional state-changing processes that occur in a cold ion trap with He as a buffer gas. We generate the corresponding inelastic rates for rotational transitions involving three simple molecular anions OH−(1Σ), MgH−(1Σ), and C2H−(1Σ) colliding with the helium atoms of the trap. We show that the rotational constants of these molecular anions are such that within the low-temperature regimes of a cold ion trap (up to about 50 K), a different proportion of molecular states are significantly populated when loading helium as a buffer gas in the trap. By varying the trap operating conditions, population equilibrium at the relevant range of temperatures is reached within different time scales. In the modeling of the photodetachment experiments, we analyze the effects of varying the chosen values for photodetachment rates as well as the laser photon fluxes. Additionally, the changing of the collision dynamics under different buffer gas densities is examined and the best operating conditions, for the different anions, for yielding higher populations of specific rotational states within the ion traps are extracted. The present modeling thus illustrates possible preparation of the trap conditions for carrying out more efficiently state-selected experiments with the trapped anions

    Rotationally inelastic processes of C-2(-) ((2)Sigma(+)(g)) colliding with He (S-1) at low temperatures: ab initio interaction potential, state changing rates and kinetic modelling

    Get PDF
    We discuss in detail the quantum rotationally inelastic dynamics of an important anion often discussed as a possible constituent of the interstellar medium (ISM) and in different environments of circumstellar envelopes: the C2−{{\rm{C}}}_{2}^{-} molecular ion. Its interaction forces with one of the most abundant atoms of the ISM, the neutral helium atom, are obtained for the first time using ab initio quantum chemistry methods. The overall angular anisotropy of the potential energy surface is analysed in order to link its features with the efficiency of transferring energy from the abundant He atoms to the internal rotational levels of this molecular anion. Calculations of the corresponding rotational state-to-state inelastic cross sections, for both excitation and de-excitation paths are obtained by using a multichannel quantum method. The corresponding inelastic rates at the temperatures of interest are determined and their role in distributing molecular states over the different populations of the rotational levels at the temperatures of that environment is discussed. These computed rates are also linked to the dynamical behaviour of the title molecule when confined in cold ion traps and made to interact with He as the common buffer gas, in preparation for state-selective photo-detachment experiments

    Variability and origin of seismic anisotropy across eastern Canada: evidence from shear-wave splitting measurements

    Get PDF
    Measurements of seismic anisotropy in continental regions are frequently interpreted with respect to past tectonic processes, preserved in the lithosphere as “fossil” fabrics. Models of the present-day sublithospheric flow (often using absolute plate motion as a proxy) are also used to explain the observations. Discriminating between these different sources of seismic anisotropy is particularly challenging beneath shields, whose thick (≄200 km) lithospheric roots may record a protracted history of deformation and strongly influence underlying mantle flow. Eastern Canada, where the geological record spans ∌3 Ga of Earth history, is an ideal region to address this issue. We use shear wave splitting measurements of core phases such as SKS to define upper mantle anisotropy using the orientation of the fast-polarization direction ϕ and delay time ÎŽt between fast and slow shear wave arrivals. Comparison with structural trends in surface geology and aeromagnetic data helps to determine the contribution of fossil lithospheric fabrics to the anisotropy. We also assess the influence of sublithospheric mantle flow via flow directions derived from global geodynamic models. Fast-polarization orientations are generally ENE-WSW to ESE-WNW across the region, but significant lateral variability in splitting parameters on a ≀100 km scale implies a lithospheric contribution to the results. Correlations with structural geologic and magnetic trends are not ubiquitous, however, nor are correlations with geodynamically predicted mantle flow directions. We therefore consider that the splitting parameters likely record a combination of the present-day mantle flow and older lithospheric fabrics. Consideration of both sources of anisotropy is critical in shield regions when interpreting splitting observations

    Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks

    Full text link
    Zazo R, Lozano-Diez A, Gonzalez-Dominguez J, T. Toledano D, Gonzalez-Rodriguez J (2016) Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks. PLoS ONE 11(1): e0146917. doi:10.1371/journal.pone.0146917Long Short Term Memory (LSTM) Recurrent Neural Networks (RNNs) have recently outperformed other state-of-the-art approaches, such as i-vector and Deep Neural Networks (DNNs), in automatic Language Identification (LID), particularly when dealing with very short utterances (similar to 3s). In this contribution we present an open-source, end-to-end, LSTM RNN system running on limited computational resources (a single GPU) that outperforms a reference i-vector system on a subset of the NIST Language Recognition Evaluation (8 target languages, 3s task) by up to a 26%. This result is in line with previously published research using proprietary LSTM implementations and huge computational resources, which made these former results hardly reproducible. Further, we extend those previous experiments modeling unseen languages (out of set, OOS, modeling), which is crucial in real applications. Results show that a LSTM RNN with OOS modeling is able to detect these languages and generalizes robustly to unseen OOS languages. Finally, we also analyze the effect of even more limited test data (from 2.25s to 0.1s) proving that with as little as 0.5s an accuracy of over 50% can be achieved.This work has been supported by project CMC-V2: Caracterizacion, Modelado y Compensacion de Variabilidad en la Señal de Voz (TEC2012-37585-C02-01), funded by Ministerio de Economia y Competitividad, Spain

    Strongly Coupled Spin Waves and Surface Acoustic Waves at Room Temperature

    Full text link
    Here, we report the observation of strong coupling between magnons and surface acoustic wave (SAW) phonons in a thin CoFeB film constructed in an on-chip SAW resonator by analyzing SAW phonon dispersion anticrossings. Our device design provides the tunability of the film thickness with a fixed phonon wavelength, which is a departure from the conventional approach in strong magnon--phonon coupling research. We detect a monotonic increase in the coupling strength by expanding the film thickness, which agrees with our theoretical model. Our work offers a significant way to advance fundamental research and the development of devices based on magnon--phonon hybrid quasiparticles.Comment: Main text 6 pages, 4 figures, plus supplemental material

    Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells

    Get PDF
    In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same "fast-spiking" phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species. © 2013 Povysheva et al

    GLAST: Understanding the High Energy Gamma-Ray Sky

    Full text link
    We discuss the ability of the GLAST Large Area Telescope (LAT) to identify, resolve, and study the high energy gamma-ray sky. Compared to previous instruments the telescope will have greatly improved sensitivity and ability to localize gamma-ray point sources. The ability to resolve the location and identity of EGRET unidentified sources is described. We summarize the current knowledge of the high energy gamma-ray sky and discuss the astrophysics of known and some prospective classes of gamma-ray emitters. In addition, we also describe the potential of GLAST to resolve old puzzles and to discover new classes of sources.Comment: To appear in Cosmic Gamma Ray Sources, Kluwer ASSL Series, Edited by K.S. Cheng and G.E. Romer

    Machine-learning of atomic-scale properties based on physical principles

    Full text link
    We briefly summarize the kernel regression approach, as used recently in materials modelling, to fitting functions, particularly potential energy surfaces, and highlight how the linear algebra framework can be used to both predict and train from linear functionals of the potential energy, such as the total energy and atomic forces. We then give a detailed account of the Smooth Overlap of Atomic Positions (SOAP) representation and kernel, showing how it arises from an abstract representation of smooth atomic densities, and how it is related to several popular density-based representations of atomic structure. We also discuss recent generalisations that allow fine control of correlations between different atomic species, prediction and fitting of tensorial properties, and also how to construct structural kernels---applicable to comparing entire molecules or periodic systems---that go beyond an additive combination of local environments

    Radiological and pathological findings of a metastatic composite paraganglioma with neuroblastoma in a man: a case report

    Get PDF
    INTRODUCTION: Composite tumors of the adrenal medulla or paraganglia are extremely rare and present a diagnostic dilemma. These tumors consist of a neuroendocrine component mixed with a neural component.We describe the imaging characteristics together with the corresponding pathological findings of a composite tumor. Apart from any component-specific imaging findings, the hallmark of this entity is the presence of histologically distinguishable components. CASE PRESENTATION: A 61-year-old Caucasian man was referred to our hospital due to a suspect lesion found on chest computed tomography carried out for unclear thoracic pain. An abdominal computed tomography scan and ultrasound examination detected a retroperitoneal tumor comprising two different tumor components. Twenty-four-hour urine revealed high levels of normetanephrine, characteristic of a neuroendocrine tumor. An octreoscan prior to surgical procedures revealed multiple osseous and intra-hepatic metastases. The final histopathological workup revealed a composite paraganglioma with neuroblastoma. Our patient died ten months after the initial diagnosis from tumor-associated complications. CONCLUSIONS: Composite paragangliomas with neuroblastoma are rare tumors of the retroperitoneum. Such tumors should be considered in the differential diagnosis of retroperitoneal masses
    • 

    corecore