50,042 research outputs found

    Resource requirements and speed versus geometry of unconditionally secure physical key exchanges

    Get PDF
    The imperative need for unconditional secure key exchange is expounded by the increasing connectivity of networks and by the increasing number and level of sophistication of cyberattacks. Two concepts that are information theoretically secure are quantum key distribution (QKD) and Kirchoff-law-Johnson-noise (KLJN). However, these concepts require a dedicated connection between hosts in peer-to-peer (P2P) networks which can be impractical and or cost prohibitive. A practical and cost effective method is to have each host share their respective cable(s) with other hosts such that two remote hosts can realize a secure key exchange without the need of an additional cable or key exchanger. In this article we analyze the cost complexities of cable, key exchangers, and time required in the star network. We mentioned the reliability of the star network and compare it with other network geometries. We also conceived a protocol and equation for the number of secure bit exchange periods needed in a star network. We then outline other network geometries and trade-off possibilities that seem interesting to explore.Comment: 13 pages, 7 figures, MDPI Entrop

    CP violation with a dynamical Higgs

    Get PDF
    We determine the complete set of independent gauge and gauge-Higgs CP-odd effective operators for the generic case of a dynamical Higgs, up to four derivatives in the chiral expansion. The relation with the linear basis of dimension six CP-odd operators is clarified. Phenomenological applications include bounds inferred from electric dipole moment limits, and from present and future collider data on triple gauge coupling measurements and Higgs signals.Comment: 41 pages, 3 figures; V2: citations added, typos corrected, version published on JHE

    Solar Model Parameters and Direct Measurements of Solar Neutrino Fluxes

    Full text link
    We explore a novel possibility of determining the solar model parameters, which serve as input in the calculations of the solar neutrino fluxes, by exploiting the data from direct measurements of the fluxes. More specifically, we use the rather precise value of the 8B^8B neutrino flux, Ï•B\phi_B obtained from the global analysis of the solar neutrino and KamLAND data, to derive constraints on each of the solar model parameters on which Ï•B\phi_B depends. We also use more precise values of 7Be^7Be and pppp fluxes as can be obtained from future prospective data and discuss whether such measurements can help in reducing the uncertainties of one or more input parameters of the Standard Solar Model.Comment: 25 pages, 3 figure

    Physical constraints on interacting dark energy models

    Full text link
    Physical limits on the equation-of-state (EoS) parameter of a dark energy component non-minimally coupled with the dark matter field are examined in light of the second law of thermodynamics and the positiveness of entropy. Such constraints are combined with observational data sets of type Ia supernovae, baryon acoustic oscillations and the angular acoustic scale of the cosmic microwave background to impose restrictions on the behaviour of the dark matter/dark energy interaction. Considering two EoS parameterisations of the type w=w0+waζ(z)w = w_0 + w_a\zeta(z), we derive a general expression for the evolution of the dark energy density and show that the combination of thermodynamic limits and observational data provide tight bounds on the w0−waw_0 - w_a parameter space.Comment: 7 pages, 4 figures. Accepted for publication in European Physical Journal

    The properties of attractors of canalyzing random Boolean networks

    Full text link
    We study critical random Boolean networks with two inputs per node that contain only canalyzing functions. We present a phenomenological theory that explains how a frozen core of nodes that are frozen on all attractors arises. This theory leads to an intuitive understanding of the system's dynamics as it demonstrates the analogy between standard random Boolean networks and networks with canalyzing functions only. It reproduces correctly the scaling of the number of nonfrozen nodes with system size. We then investigate numerically attractor lengths and numbers, and explain the findings in terms of the properties of relevant components. In particular we show that canalyzing networks can contain very long attractors, albeit they occur less often than in standard networks.Comment: 9 pages, 8 figure

    Moving embedded lattice solitons

    Full text link
    It was recently proved that isolated unstable "embedded lattice solitons" (ELS) may exist in discrete systems. The discovery of these ELS gives rise to relevant questions such as the following: are there continuous families of ELS?, can ELS be stable?, is it possible for ELS to move along the lattice?, how do ELS interact?. The present work addresses these questions by showing that a novel differential-difference equation (a discrete version of a complex mKdV equation) has a two-parameter continuous family of exact ELS. The numerical tests reveal that these solitons are stable and robust enough to withstand collisions. The model may apply to the description of a Bose-Einstein condensate with dipole-dipole interactions between the atoms, trapped in a deep optical-lattice potential.Comment: 13 pages, 11 figure

    Disentangling a dynamical Higgs

    Get PDF
    The pattern of deviations from Standard Model predictions and couplings is different for theories of new physics based on a non-linear realization of the SU(2)L×U(1)YSU(2)_L\times U(1)_Y gauge symmetry breaking and those assuming a linear realization. We clarify this issue in a model-independent way via its effective Lagrangian formulation in the presence of a light Higgs particle, up to first order in the expansions: dimension-six operators for the linear expansion and four derivatives for the non-linear one. Complete sets of pure gauge and gauge-Higgs operators are considered, implementing the renormalization procedure and deriving the Feynman rules for the non-linear expansion. We establish the theoretical relation and the differences in physics impact between the two expansions. Promising discriminating signals include the decorrelation in the non-linear case of signals correlated in the linear one: some pure gauge versus gauge-Higgs couplings and also between couplings with the same number of Higgs legs. Furthermore, anomalous signals expected at first order in the non-linear realization may appear only at higher orders of the linear one, and vice versa. We analyze in detail the impact of both type of discriminating signals on LHC physics.Comment: Version published in JHE

    Excitons in coupled InAs/InP self-assembled quantum wires

    Get PDF
    Optical transitions in coupled InAs/InP self-assembled quantum wires are studied within the single-band effective mass approximation including effects due to strain. Both vertically and horizontally coupled quantum wires are investigated and the ground state, excited states and the photoluminescence peak energies are calculated. Where possible we compare with available photo-luminescence data from which it was possible to determine the height of the quantum wires. An anti-crossing of the energy of excited states is found for vertically coupled wires signaling a change of symmetry of the exciton wavefunction. This crossing is the signature of two different coupling regimes.Comment: 8 pages, 8 figures. To appear in Physical Review

    Spectral Evolution of Two High-Energy Gamma-Ray Bursts

    Full text link
    The prompt emission of the gamma-ray bursts is found to be very energetic, releasing ~10^51 ergs in a flash. However, their emission mechanism remains unclear and understanding their spectra is a key to determining the emission mechanism. Many GRB spectra have been analyzed in the sub-MeV energy band, and are usually well described with a smoothly broken power-law model. We present a spectral analysis of two bright bursts (GRB910503 and GRB930506), using BATSE and EGRET spectra that cover more than four decades of energy (30 keV - 200 MeV). Our results show time evolutions of spectral parameters (low-energy & high-energy photon indices and break energy) that are difficult to reconcile with a simple shock-acceleration model.Comment: 8 pages, 2 figures, to appear in the proceedings of "Astrophysical Particle Acceleration in Geospace and Beyond", Chattanooga, 2002, AGU monograp

    Big Data and Analysis of Data Transfers for International Research Networks Using NetSage

    Get PDF
    Modern science is increasingly data-driven and collaborative in nature. Many scientific disciplines, including genomics, high-energy physics, astronomy, and atmospheric science, produce petabytes of data that must be shared with collaborators all over the world. The National Science Foundation-supported International Research Network Connection (IRNC) links have been essential to enabling this collaboration, but as data sharing has increased, so has the amount of information being collected to understand network performance. New capabilities to measure and analyze the performance of international wide-area networks are essential to ensure end-users are able to take full advantage of such infrastructure for their big data applications. NetSage is a project to develop a unified, open, privacy-aware network measurement, and visualization service to address the needs of monitoring today's high-speed international research networks. NetSage collects data on both backbone links and exchange points, which can be as much as 1Tb per month. This puts a significant strain on hardware, not only in terms storage needs to hold multi-year historical data, but also in terms of processor and memory needs to analyze the data to understand network behaviors. This paper addresses the basic NetSage architecture, its current data collection and archiving approach, and details the constraints of dealing with this big data problem of handling vast amounts of monitoring data, while providing useful, extensible visualization to end users
    • …
    corecore