394 research outputs found

    Evolution of <i>E. coli</i> on [U<sup>-13</sup>C] Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology

    Get PDF
    13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia coli were adaptively evolved for ~1000 generations on uniformly labeled 13C-glucose, a commonly used isotope for 13C-MFA. Phenotypic characterization of these evolved strains revealed ~40% increases in growth rate, with no significant difference in fitness when grown on either labeled (13C) or unlabeled (12C) glucose. The evolved strains displayed decreased biomass yields, increased glucose and oxygen uptake, and increased acetate production, mimicking what is observed after adaptive evolution on unlabeled glucose. Furthermore, full genome re-sequencing revealed that the key genetic changes underlying these phenotypic alterations were essentially the same as those acquired during adaptive evolution on unlabeled glucose. Additionally, glucose competition experiments demonstrated that the wild-type exhibits no isotopic preference for unlabeled glucose, and the evolved strains have no preference for labeled glucose. Overall, the results of this study indicate that there are no significant differences between 12C and 13C-glucose as a carbon source for E. coli growth

    Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli

    Get PDF
    Unraveling the mechanisms of microbial adaptive evolution following genetic or environmental challenges is of fundamental interest in biological science and engineering. When the challenge is the loss of a metabolic enzyme, adaptive responses can also shed significant insight into metabolic robustness, regulation, and areas of kinetic limitation. In this study, whole-genome sequencing and highresolution C-13-metabolic flux analysis were performed on 10 adaptively evolved pgi knockouts of Escherichia coli. Pgi catalyzes the first reaction in glycolysis, and its loss results in major physiological and carbon catabolism pathway changes, including an 80% reduction in growth rate. Following adaptive laboratory evolution (ALE), the knockouts increase their growth rate by up to 3.6-fold. Through combined genomic-fluxomic analysis, we characterized the mutations and resulting metabolic fluxes that enabled this fitness recovery. Large increases in pyridine cofactor transhydrogenase flux, correcting imbalanced production of NADPH and NADH, were enabled by direct mutations to the transhydrogenase genes sthA and pntAB. The phosphotransferase system component crr was also found to be frequently mutated, which corresponded to elevated flux from pyruvate to phosphoenolpyruvate. The overall energy metabolism was found to be strikingly robust, and what have been previously described as latently activated Entner-Doudoroff and glyoxylate shunt pathways are shown here to represent no real increases in absolute flux relative to the wild type. These results indicate that the dominant mechanism of adaptation was to relieve the rate-limiting steps in cofactor metabolism and substrate uptake and to modulate global transcriptional regulation from stress response to catabolism

    Removal of Arsenic from water using synthetic Fe7S8 nanoparticles

    Get PDF
    In the present study, pyrrhotite was used to remove arsenite and arsenate from aqueous solutions. The Fe7S8 was synthesized using a solvothermal synthetic method and it was characterized using XRD and SEM micrographs. Furthermore, the particle size for the nanomaterial Fe7S8 was determined to be 29.86 ± 0.87 nm using Scherer’s equation. During the pH profile studies, the optimum pH for the binding of As (III) and As (V) was determined to be pH 4. Batch isotherm studies were performed to determine the binding capacity of As(III) and As(V), which was determined to be 14.3 mg/g and 31.3 mg/g respectively for 25°C. The thermodynamic studies indicated that the ΔG for the sorption of As(III) and As(V) ranged from −115.5 to −0.96 kJ/mol, indicating a spontaneous process was occurring. The enthalpy indicated that an exothermic reaction was occurring during the adsorption in which the ΔH was −53.69 kJ/mol and −32.51 kJ/mol for As(III) and As(V) respectively. In addition, ΔS values for the reaction had negative values of −160.46 J/K and −99.77 J/K for the adsorption of As(III) and As(V) respectively which indicated that the reaction was spontaneous at low temperatures. Furthermore, the sorption for As(III) and As(V) was determined to follow the second order kinetics adsorption model

    High-excitation OH and H_2O lines in Markarian 231: the molecular signatures of compact far-infrared continuum sources

    Full text link
    The ISO/LWS far-infrared spectrum of the ultraluminous galaxy Mkn 231 shows OH and H_2O lines in absorption from energy levels up to 300 K above the ground state, and emission in the [O I] 63 micron and [C II] 158 micron lines. Our analysis shows that OH and H_2O are radiatively pumped by the far-infrared continuum emission of the galaxy. The absorptions in the high-excitation lines require high far-infrared radiation densities, allowing us to constrain the properties of the underlying continuum source. The bulk of the far-infrared continuum arises from a warm (T_dust=70-100 K), optically thick (tau_100micron=1-2) medium of effective diameter 200-400 pc. In our best-fit model of total luminosity L_IR, the observed OH and H2O high-lying lines arise from a luminous (L/L_IR~0.56) region with radius ~100 pc. The high surface brightness of this component suggests that its infrared emission is dominated by the AGN. The derived column densities N(OH)>~10^{17} cm^{-2} and N(H_2O)>~6x10^{16} cm^{-2} may indicate XDR chemistry, although significant starburst chemistry cannot be ruled out. The lower-lying OH, [C II] 158 micron, and [O I] 63 micron lines arise from a more extended (~350 pc) starburst region. We show that the [C II] deficit in Mkn 231 is compatible with a high average abundance of C+ because of an extreme overall luminosity to gas mass ratio. Therefore, a [C II] deficit may indicate a significant contribution to the luminosity by an AGN, and/or by extremely efficient star formation.Comment: 16 pages, 6 figures, accepted for publication in The Astrophysical Journa

    Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring

    Get PDF
    Adaptive laboratory evolution (ALE) is a widely-used method for improving the fitness of microorganisms in selected environmental conditions. It has been applied previously to Escherichia coli K-12 MG1655 during aerobic exponential growth on glucose minimal media, a frequently used model organism and growth condition, to probe the limits of E. coli growth rate and gain insights into fast growth phenotypes. Previous studies have described up to 1.6-fold increases in growth rate following ALE, and have identified key causal genetic mutations and changes in transcriptional patterns. Here, we report for the first time intracellular metabolic fluxes for six such adaptively evolved strains, as determined by high-resolution 13C-metabolic flux analysis. Interestingly, we found that intracellular metabolic pathway usage changed very little following adaptive evolution. Instead, at the level of central carbon metabolism the faster growth was facilitated by proportional increases in glucose uptake and all intracellular rates. Of the six evolved strains studied here, only one strain showed a small degree of flux rewiring, and this was also the strain with unique genetic mutations. A comparison of fluxes with two other wild-type (unevolved) E. coli strains, BW25113 and BL21, showed that inter-strain differences are greater than differences between the parental and evolved strains. Principal component analysis highlighted that nearly all flux differences (95%) between the nine strains were captured by only two principal components. The distance between measured and flux balance analysis predicted fluxes was also investigated. It suggested a relatively wide range of similar stoichiometric optima, which opens new questions about the path-dependency of adaptive evolution

    Carnegie Supernova Project-II: Extending the Near-Infrared Hubble Diagram for Type Ia Supernovae to z∌0.1z\sim0.1

    Full text link
    The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a "Cosmology" sample of ∌100\sim100 Type Ia supernovae located in the smooth Hubble flow (0.03â‰Čzâ‰Č0.100.03 \lesssim z \lesssim 0.10). Light curves were also obtained of a "Physics" sample composed of 90 nearby Type Ia supernovae at z≀0.04z \leq 0.04 selected for near-infrared spectroscopic time-series observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.Comment: 43 pages, 10 figures, accepted for publication in PAS

    Comparison of Multi-Parallel qPCR and Double-Slide Kato-Katz for Detection of Soil-Transmitted Helminth Infection Among Children in Rural Bangladesh

    Get PDF
    There is growing interest in local elimination of soil-transmitted helminth (STH) infection in endemic settings. In such settings, highly sensitive diagnostics are needed to detect STH infection. We compared double-slide Kato-Katz, the most commonly used copromicroscopic detection method, to multi-parallel quantitative polymerase chain reaction (qPCR) in 2,799 stool samples from children aged 2–12 years in a setting in rural Bangladesh with predominantly low STH infection intensity. We estimated the sensitivity and specificity of each diagnostic using Bayesian latent class analysis. Compared to double-slide Kato-Katz, STH prevalence using qPCR was almost 3-fold higher for hookworm species and nearly 2-fold higher for Trichuris trichiura. Ascaris lumbricoides prevalence was lower using qPCR, and 26% of samples classified as A. lumbricoides positive by Kato-Katz were negative by qPCR. Amplicon sequencing of the 18S rDNA from 10 samples confirmed that A. lumbricoides was absent in samples classified as positive by Kato-Katz and negative by qPCR. The sensitivity of Kato-Katz was 49% for A. lumbricoides, 32% for hookworm, and 52% for T. trichiura; the sensitivity of qPCR was 79% for A. lumbricoides, 93% for hookworm, and 90% for T. tri-chiura. Specificity was ≄97% for both tests for all STH except for Kato-Katz for A. lumbri-coides (specificity = 68%). There were moderate negative, monotonic correlations between qPCR cycle quantification values and eggs per gram quantified by Kato-Katz. While it is widely assumed that double-slide Kato-Katz has few false positives, our results indicate otherwise and highlight inherent limitations of the Kato-Katz technique. qPCR had higher sensitivity than Kato-Katz in this low intensity infection setting

    Patient-reported GP health assessments rather than individual cardiovascular risk burden are associated with the engagement in lifestyle changes: Population-based survey in South Australia

    Get PDF
    © 2019 The Author(s). Background: Little is known about whether a more comprehensive health assessment, performed by a general practitioner (GP) during a clinical encounter, could influence patients' lifestyle. We aimed to investigate whether health assessments, performed by GPs, are more important than the presence of cardiovascular disease (CVD) or cardiometabolic risk factors (obesity, diabetes, hypertension, dyslipidaemia) for engagement in lifestyle change. Methods: Cross-sectional, population-based survey conducted in South Australia (September-December 2017) using face-To-face interviews and self-reported data of 2977 individuals aged 15+ years. The main outcome was engagement in four lifestyle changes: 1) increasing fruit/vegetable intake, 2) increasing physical activity level, 3) reducing alcohol consumption, and 4) attempts to stop smoking. Health assessments performed by a GP in the last 12 months included clinical/laboratory investigations (weight/waist circumference, blood pressure, glucose levels, lipid levels) and questions about lifestyle/wellbeing (current diet, physical activity, smoking status, alcohol intake, mental health, sleeping problems). Results were restricted to individuals aged 35+ years because of the low prevalence of CVD or their risk factors among younger participants. Logistic regression was used in all associations, adjusted for sociodemographic, lifestyle, mental health, and clinical variables. Results: Of the 2384 investigated adults (mean age 57.3 ± 13.9 years; 51.9% females), 10.2% had CVD and 49.1% at least one cardiometabolic risk factor. Clinical/laboratory assessments performed by the GP were 2-3 times more frequent than assessments of lifestyle, mental health status, or sleeping problems, especially among those with CVD. Individuals with CVD or a cardiometabolic risk factor were no more likely to be increasing their fruit/vegetable consumption (33.6%), physical activity level (40.9%), reducing alcohol consumption (31.1%), or trying to quit smoking (34.0%) than 'healthy' participants. However, lifestyle changes were between 30 and 100% more likely when GPs performed three or more health assessments (either clinical/laboratory or questions about lifestyle/wellbeing) than when individuals did not visit the GP or when GPs performed no any assessment during these clinical encounters (p < 0.05 in all cases). Conclusion: More frequent and comprehensive CVD-related assessments by GPs were more important in promoting a healthier lifestyle than the presence of CVD or cardiometabolic risk factors by themselves

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research
    • 

    corecore