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ABSTRACT 

Adaptive laboratory evolution (ALE) is a widely-used method for improving the fitness of 

microorganisms in selected environmental conditions. It has been applied previously to 

Escherichia coli K-12 MG1655 during aerobic exponential growth on glucose minimal media, a 

frequently used model organism and growth condition, to probe the limits of E. coli growth rate 

and gain insights into fast growth phenotypes. Previous studies have described up to 1.6-fold 

increases in growth rate following ALE, and have identified key causal genetic mutations and 

changes in transcriptional patterns. Here, we report for the first time intracellular metabolic 

fluxes for six such adaptively evolved strains, as determined by high-resolution 13C-metabolic 

flux analysis. Interestingly, we found that intracellular metabolic pathway usage changed very 

little following adaptive evolution. Instead, at the level of central carbon metabolism the faster 

growth was facilitated by proportional increases in glucose uptake and all intracellular rates. Of 

the six evolved strains studied here, only one strain showed a small degree of flux rewiring, and 

this was also the strain with unique genetic mutations. A comparison of fluxes with two other 

wild-type (unevolved) E. coli strains, BW25113 and BL21, showed that inter-strain differences 

are greater than differences between the parental and evolved strains. Principal component 

analysis highlighted that nearly all flux differences (95%) between the nine strains were captured 

by only two principal components. The distance between measured and flux balance analysis 

predicted fluxes was also investigated. It suggested a relatively wide range of similar 

stoichiometric optima, which opens new questions about the path-dependency of adaptive 

evolution. 
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1. INTRODUCTION 

Adaptive laboratory evolution (ALE) is a method in which microorganisms are continuously 

cultured in a controlled environment over many generations, allowing for fitness improvement 

through the accumulation of beneficial mutations. ALE has been applied to increasing chemical 

tolerance (Atsumi et al., 2010; Horinouchi et al., 2010; Mundhada et al., 2017; Reyes et al., 

2012), rates of growth on diverse substrates (Cordova et al., 2016; Herring et al., 2006; Lee and 

Palsson, 2010; Sandberg et al., 2017), and gaining general insight into microbial responses to 

environmental or genetic perturbations (Charusanti et al., 2010; Fong and Palsson, 2004; 

Tenaillon et al., 2012). Following an ALE experiment, the resulting strains are sequenced to 

identify genetic mutations (Herring et al., 2006). The difficulty inherent in identifying causal 

mutations has led to the practice of performing multiple independent ALE experiments and using 

the frequency of mutations to guide analysis (LaCroix et al., 2015). Phenotypic characterization 

is then necessary to quantitatively describe the extent of the fitness improvement (e.g. increase in 

growth rate) and the associated physiology. Detailed cellular characterizations involving omics 

techniques such as transcriptomics, proteomics, metabolomics, and fluxomics can then enable 

systems and pathway-level analysis of the phenotype and its enabling mechanisms. Ideally, such 

approaches would result in genotype-phenotype insights that improve our general scientific 

understanding of the cell system and inform future rational engineering efforts (Long and 

Antoniewicz, 2014a).  

 

Exponential aerobic growth of E. coli K-12 MG1655 on glucose minimal media is arguably the 

most widely used combination of organism and condition in basic science and biotechnology 

(Janssen et al., 2005). ALE applied in this context, particularly serial passaging of batch cultures 
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such that the exponential phase is maintained, selects for increased growth rate. Such efforts 

probe the limits of E. coli growth performance and allow for the study of fast growing 

phenotypes that might be useful in biotechnology. Previously, LaCroix et al. reported the 

phenotypes and transcriptional analysis of ten independent ALE experiments of E. coli MG1655 

(LaCroix et al., 2015). They reported up to 1.6-fold increases in growth rate, and identified 

frequent causal mutations in rpoB and intergenic regions of hns/tdk and pyrE/rph. The pyrE/rph 

mutation ameliorates a well-characterized strain-specific defect in pyrimidine biosynthesis 

(Jensen, 1993), and the other two likely result in broad transcriptional changes as rpoB and hns 

are global regulators. Transcriptomic analyses revealed increases in expression of genes 

associated with protein production (amino acid metabolism, transcription, translation, folding), 

glucose transport, and glycolysis, and reductions in enzymes involved in the TCA cycle and 

glyoxylate shunt. Similarly, Sandberg et al. reported the results of six independent ALE 

experiments, also using E. coli MG1655 and aerobic exponential growth on glucose minimal 

media (Sandberg et al., 2016). Here, ALE was carried out over 40 days, or approximately 1000 

generations, through serial passaging such that stationary phase was avoided. The glucose was 

13C labeled to test the hypothesis that a subtle kinetic isotope effect may influence metabolism 

and the trajectory of ALE, but this was disproven in isotopic preference studies described 

previously (Sandberg et al., 2016). Furthermore, the final growth rates and most frequent 

mutations were very similar to those in (LaCroix et al., 2015), and the same key mutations (rpoB, 

pyrE/rph, and hsns/tdk) occurred with high frequency in the six ALE experiments.  

 

The genetic and transcription level changes in these studies suggest the possibility of broad 

metabolic shifts in the adaptively evolved strains. However, to our knowledge, intracellular 
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metabolic fluxes of such strains have not yet been reported. In this study, we applied high-

resolution 13C-metabolic flux analysis (13C-MFA) (Antoniewicz, 2015) to the six ALE strains 

previously described in (Sandberg et al., 2016) to determine whether their high growth rate is 

enabled by or associated with rewiring of central carbon metabolism. For additional context, the 

fluxes of the ALE strains were compared to the parent MG1655 strain, a related K-12 strain 

(BW25113), and a more distantly related E. coli strain BL21. Finally, flux balance analysis 

(FBA) was performed to compare the calculated optimal stoichiometric solution to the measured 

in vivo fluxes. 

 

2. MATERIALS AND METHODS 

2.1. Materials 

Chemicals and M9 minimal medium were purchased from Sigma-Aldrich (St. Louis, MO). 

Isotopic tracers were purchased from Cambridge Isotope Laboratories (Tewksbury, MA): [1,2-

13C]glucose (99.7 %) and [1,6-13C]glucose (99.2 % 13C). The isotopic purity and enrichment of 

the tracers were validated by GC-MS analysis as described in (Sandberg et al., 2016) and 

(Cordova and Antoniewicz, 2016). All solutions were sterilized by filtration.  

 

2.2. Strains and growth conditions 

E. coli BL21(DE3) was obtained from Invitrogen (Cat. No. C600003). E. coli BW25113 was 

obtained from the Keio collection (GE Healthcare Dharmacon, Cat. No. OEC5042). The 

MG1655 wild-type and adaptively evolved (ALE) strains were previously described in 

(Sandberg et al., 2016). The wild-type was K-12 MG1655 (ATCC 700926). Six independent 

cultures were adaptively evolved in M9 minimal glucose medium for 40 days, corresponding to 
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an average of 963 generations, or 2.82 x 1012 cumulative cell divisions (CCD). Passaging was 

frequent enough to avoid glucose depletion and initiation of stationary phase. In this study, all 

strains were cultured aerobically in glucose M9 minimal medium at 37°C in mini-bioreactors 

with 10 mL working volume as previously described (Long et al., 2016b). Pre-cultures were 

grown overnight and then used to inoculate the experimental culture at an OD600 of 0.01. For 

13C-MFA, glucose tracers were added at the beginning of the culture. Cells were harvested (1 mL 

samples) for GC-MS analysis at mid-exponential growth when OD600 was approximately 0.7. In 

all cases, parallel tracer experiments were performed using [1,2-13C]glucose and [1,6-

13C]glucose. These tracers were previously determined to be optimal for high-resolution 13C-

MFA of E. coli (Crown et al., 2016).  

 

2.3. Analytical methods 

Cell growth was monitored by measuring the optical density at 600nm (OD600) using a 

spectrophotometer (Eppendorf BioPhotometer). The OD600 values were converted to cell dry 

weight concentrations using previously determined OD600-dry cell weight relationship for E. coli 

(1.0 OD600 = 0.32 gDW/L; molecular weight of dry biomass = 24.6 gDW/C-mol (Long et al., 

2016b). After centrifugation of the samples, the supernatant was separated from the biomass 

pellet. Acetate concentrations in the supernatant were determined using an Agilent 1200 Series 

HPLC (Gonzalez et al., 2017). Glucose concentrations were determined using a YSI 2700 

biochemistry analyzer (YSI, Yellow Springs, OH). Growth rate was calculated using linear 

regression of the natural logarithm of the OD600 and time, and biomass yield via regression of 

biomass dry weight and glucose concentration in the medium.  
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2.4. Gas chromatography-mass spectrometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped with a DB-5MS 

capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; Agilent J&W Scientific), 

connected to an Agilent 5977A Mass Spectrometer operating under ionization by electron impact 

(EI) at 70 eV. Helium flow was maintained at 1 mL/min. The source temperature was maintained 

at 230°C, the MS quad temperature at 150°C, the interface temperature at 280°C, and the inlet 

temperature at 250°C. GC-MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized 

proteinogenic amino acids was performed as described in (Long and Antoniewicz, 2014b). 

Labeling of glucose (derived from glycogen) and ribose (derived from RNA) were determined as 

described in (Long et al., 2016a; McConnell and Antoniewicz, 2016). In all cases, mass 

isotopomer distributions were obtained by integration (Antoniewicz et al., 2007a) and corrected 

for natural isotope abundances (Fernandez et al., 1996). Measurement errors of 0.3% were 

assumed for all measured mass isotopomers (Antoniewicz et al., 2007a). 

 

2.5. Metabolic network model and 13C-metabolic flux analysis 

The metabolic network model used for 13C-MFA is provided in Supplemental Materials. The 

model is based on the E. coli model described previously (Crown et al., 2015; Gonzalez et al., 

2016), which includes all major metabolic pathways of central carbon metabolism, lumped 

amino acid biosynthesis reactions, and a lumped biomass formation reaction. Updates to the 

model include: i) making the reactions between PEP and pyruvate (Long et al., 2017), and 

between -ketoglutarate and succinyl-CoA reversible; ii) allowing for deamination of serine to 

pyruvate; and iii) modeling atmospheric CO2 dilution of each labeling experiment independently 

(Leighty and Antoniewicz, 2012).  
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13C-MFA calculations were performed using the Metran software (Yoo et al., 2008), which is 

based on the elementary metabolite units (EMU) framework (Antoniewicz et al., 2007b). Fluxes 

were estimated by minimizing the variance-weighted sum of squared residuals (SSR) between 

the measured and model predicted mass isotopomer distributions and acetate yield using non-

linear least-squares regression. All measured mass isotopomers are provided in Supplemental 

Materials. For integrated analysis of parallel labeling experiments, the data sets were fitted 

simultaneously to a single flux model as described previously (Leighty and Antoniewicz, 2013). 

Flux estimation was repeated 10 times starting with random initial values for all fluxes to find a 

global solution. At convergence, accurate 95% confidence intervals were computed for all 

estimated fluxes by evaluating the sensitivity of the minimized SSR to flux variations. Precision 

of estimated fluxes was determined as follows : 

 

Flux precision (stdev) = [(flux upper bound 95%)  (flux lower bound 95%)] / 4    

 

To describe fractional labeling of metabolites, G-value parameters were included in 13C-MFA. 

As described previously (Antoniewicz et al., 2007c), the G-value represents the fraction of a 

metabolite pool that is produced during the labeling experiment, while 1-G represents the 

fraction that is naturally labeled, i.e. from the inoculum. By default, one G-value parameter was 

included for each measured metabolite in each data set. Reversible reactions were modeled as 

separate forward and backward fluxes. Net and exchange fluxes were determined as follows: vnet 

= vf-vb; vexch = min(vf, vb). 
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2.6. Goodness-of-fit analysis 

To determine the goodness-of-fit, 13C-MFA fitting results were subjected to a 2-statistical test. 

In short, assuming that the model is correct and data are without gross measurement errors, the 

minimized SSR is a stochastic variable with a 2-distribution (Antoniewicz et al., 2006). The 

number of degrees of freedom is equal to the number of fitted measurements n minus the number 

of estimated independent parameters p. The acceptable range of SSR values is between 2 (n-p) 

and 2
1- (n-p

confidence interval. 

 

2.7. Flux balance analysis (FBA) and flux variability analysis (FVA) 

For FBA and FVA calculations, the COBRA Toolbox 2.0 implemented in Matlab was used 

(Schellenberger et al., 2011). Gurobi was used for the linear solver (http://www.gurobi.com/). 

The E. coli iAF1260 genome scale model was used (Feist et al., 2007) for all calculations. The 

measured glucose and oxygen uptake rate were used as constraints as described in the text. All 

additional import and export fluxes, as well as internal constraints, were identical to those 

contained in the iAF1260 model file . 

 

3. RESULTS AND DISCUSSION 

3.1. Growth and physiology 

In this study, three unevolved E. coli strains, i.e. BL21(DE3), BW25113, and MG1655, and six 

adaptively evolved MG1655 strains were investigated. The complete list of specific mutations 

observed in the six evolved strains, labeled ALE-1 through ALE-6, have been reported in 

(Sandberg et al., 2016). Briefly, the same key mutations previously identified as causal (LaCroix 
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et al., 2015) were recapitulated in the evolved strains, particularly various insertion sequence 

mutations in the hns/tdk intergenic region (ALE-1, ALE-3, ALE-5, ALE-6), deletions in the 

pyrE/rph intergenic region of either 1 bp (ALE-2, ALE-5) or 82 bp (ALE-1, ALE-3, ALE-4) and 

-1, ALE-2, ALE-3, ALE-4, ALE-5). ALE-6 was noticeably distinct from the 

other five strains, as it was lacking pyrE/rph and rpoB mutations, but instead had a unique rpoC 

mutation. 

 

The growth rates, biomass and acetate yields, and glucose uptake rates for all nine strains 

investigated here (i.e. three unevolved and six evolved strains) are summarized in Figs. 1 and 2. 

The growth physiology of the BW25113 strain was previously described (Long et al., 2016b). 

Like MG1655, this strain is a K-12 derivative and thus is closely related, whereas BL21 is a 

more distantly related E. coli strain. All wild-type strains had similar growth rates (0.63 to 0.68 

h-1) (Fig. 1A), and the ALE strains grew significantly faster (approximately 0.9 h-1) as expected 

and previously reported (Sandberg et al., 2016). This represents a 28-38% increase in fitness (i.e. 

growth rate) under our experimental conditions. Most of the strains had similar acetate 

production phenotypes (Fig. 1B). The K-12 strains produced approximately 0.7 mol acetate per 

mol glucose, in good agreement with previous reports (Chen et al., 2011; Leighty and 

Antoniewicz, 2013; Rahman and Shimizu, 2008). The BL21 strain produced significantly less 

acetate (0.39 mol/mol), a phenotype which has also been well characterized previously (Monk et 

al., 2016; Waegeman et al., 2012, 2011). In fact, previous studies have reported even lower 

acetate yields of 0.2 mol/mol and less, which may indicate a relatively larger variability in BL21 

strains compared to K-12 strains. Interestingly, the acetate phenotypes following adaptive 
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evolution were mostly unchanged, with the most significant change being an increase in acetate 

yield in ALE-6 from 0.66 to 0.83 mol/mol. 

 

The biomass yields were relatively consistent across all strains (0.41 to 0.44 gDW/gglc) (Fig. 1C). 

The directly measured yields and those estimated by 13C-MFA are shown in Fig. S2. While there 

was strong overall consistency, a larger difference was suggested between BL21 (0.45 g/g) and 

ALE-6 (0.38 g/g), as would be expected given the divergent acetate yield phenotypes. This 

suggests that increases in growth rate that were attained during adaptive evolution came not from 

increased carbon efficiency, but rather from increased overall metabolic rate. This was also 

reflected in the calculated glucose uptake rates (Fig. 2A), which increased from 8.5 mmol/gDW/h 

in the wild-type to up to 12.5 mmol/gDW/h in ALE-6. The oxygen uptake rates (Fig. 2B) also 

increased significantly in the ALE strains relative to the wild-type, but reached levels similar or 

only slightly higher (17 mmol/gDW/h) than the oxygen uptake rate of BL21 (15 mmol/gDW/h). 

Notably, the strain with the unique genetic mutations, i.e. ALE-6, had the highest rates of 

glucose uptake and acetate excretion. 

 

3.2. 13C metabolic flux analysis 

To quantify intracellular metabolic fluxes supporting the observed increases in growth and 

glucose uptake rates, high-resolution 13C-MFA was performed. For each strain, two parallel 

labeling experiments were performed with [1,2-13C]glucose and [1,6-13C]glucose, as this was 

previously identified to provide optimal precision in flux estimates throughout E. coli central 

carbon metabolism (Crown et al., 2016). Labeling of proteinogenic amino acids, labeling of 

ribose moiety of RNA, and glucose moiety of glycogen (Long et al., 2016a) from each parallel 
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experiment were fitted simultaneously, along with the measured acetate yield, to estimate fluxes. 

The measured mass isotopomer distributions and the estimated metabolic fluxes are 

provided in Supplemental Materials. Statistically acceptable fits were achieved in all cases, 

assuming GC-MS measurement errors of 0.3% (Antoniewicz et al., 2007a).  

 

The results of 13C-MFA are summarized in Figs. 3 and 4. In Fig. 3, the distributions of fluxes 

through two key branch points in central carbon metabolism are shown for all strains. The first 

branch point (Fig. 3A) describes the split in upper central carbon metabolism between glycolysis 

(EMP pathway), the oxidative pentose phosphate pathway (oxPPP), and the Entner Doudoroff 

(ED) pathway. The relative usage of these three pathways was remarkably consistent among the 

nine strains studied here. The main route of glucose catabolism being the EMP pathway (74 to 

78%), with almost all the rest going to the oxPPP. ED pathway usage was minimal, not 

exceeding 2% in any of these strains. There was a small increase in EMP usage in four of the six 

ALE strains relative to the parental strain. More variations between strains were observed in 

lower metabolism (Fig. 3B). The branch point here describes the fate of the lower glycolytic 

intermediate phosphoenolpyruvate (PEP), into anaplerosis (conversion to oxaloacetate via PPC), 

the TCA cycle via citrate synthase, or acetate production. The differences in the pathway usage 

here also reflect the differing acetate secretion phenotypes (Fig. 1B). Particularly, the BL21 

strain has a much lower acetate flux (35% of PEP) and a correspondingly higher TCA cycle flux 

(40%) than all K-12 strains (15% for BW25113 and 18% for MG1655). In the adaptively 

evolved strains, the relative pathway usage is once again remarkably unchanged (compared to 

the parental strain), with the only significant difference being a higher acetate secretion and 

reduced TCA cycle flux in ALE-6. The constant relative intracellular pathway usage (i.e., fluxes 
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normalized to these branch points or to glucose uptake rate) in the ALE strains corresponded to 

substantial and proportional increases in absolute flux throughout central carbon metabolism, as 

the glucose uptake rates were significantly elevated (Fig. 2A). 

 

Detailed flux maps of central carbon metabolism are shown for three selected strains in Fig. 4. 

The wild-type BL21 and MG1655 are compared along with ALE-6, which was the fastest 

growing strain and exhibited the most unique phenotype of the evolved strains. The fluxes shown 

were normalized to 100 units of glucose uptake, with the growth and glucose uptake rates for 

each strain noted. As discussed above, there was a slight increase in normalized EMP flux from 

the wild-type to ALE-6, from 72% to 76% of glucose, at the expense of the oxPPP. The flux 

differences in lower metabolism, particularly the relative rate of TCA cycle and acetate secretion 

in these three strains, can also be seen here. No significant fluxes were observed in the ED 

pathway, glyoxylate shunt, malic enzyme, or PCK reactions in any of the studied strains. Given 

this, the two branch points described in Fig. 3 captured the main variations in the normalized 

intracellular fluxes of the strains. As noted above, ALE-6 was the most different from the wild-

type, with elevated acetate yield and reduced TCA cycle usage. In absolute terms, however, the 

citrate synthase flux of ALE-6 (1.74 mmol/gDW/h) was quite similar to that of the wild-type (1.67 

mmol/gDW/h). The normalized fluxes of the other ALE strains were highly conserved from the 

parental strain. 

 

3.3 Cofactor metabolism 

The measured intracellular fluxes can be used to calculate the contributions of individual 

pathways to the production or consumption of key cofactors in metabolism, including NADH 
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and FADH2 (Fig. 5A), NADPH (Fig. 5B), and ATP (Fig. 5C) (shown here in absolute flux units). 

This analysis highlights that NADH is roughly evenly produced in glycolysis and the TCA cycle 

(approximately 40% and 50%, respectively, for BL21, and the reverse for the K-12 strains), and 

mostly consumed by the electron transport chain as part of oxidative phosphorylation in all 

strains. 15-23% of NADH is converted by transhydrogenase to NADPH, accounting for 41-55% 

of NADPH produced and supplementing the oxPPP and TCA cycle. The large TCA cycle flux in 

BL21 makes it a particularly significant source of NADPH in that strain (28%). All NADPH is 

utilized for biomass synthesis. Fig. 5C illustrates that ATP is mainly produced by oxidative 

phosphorylation (64-70%), with a smaller contribution from glycolysis (23-27%), and is 

consumed for biosynthesis and maintenance costs (under the category of  in Fig. 5C). A 

constant P/O ratio of 2 was assumed for all strains to calculate ATP production, and the 

maintenance costs were estimated as the difference between total production and consumption 

for substrate uptake and growth. As a more conservative P/O ratio of 1.5 (Noguchi et al., 2004; 

Taymaz-Nikerel et al., 2010) would reduce the estimated ATP production and maintenance 

consumption rates somewhat, these results should be interpreted with caution. The inter-strain 

differences remain relevant though, as no mutations were observed in oxidative phosphorylation 

genes that would indicate a changing P/O ratio in the ALE strains. Given the conservation of 

normalized fluxes in the MG1655 strains, much of the variation in absolute cofactor rates is due 

to differences in glucose uptake and overall metabolic rate. In Supplemental Fig. S1, the cofactor 

balances are shown normalized to glucose uptake, where it is apparent that there are only very 

subtle differences in relative cofactor metabolism across the K-12 wild-types and ALE strains. 

The elevated TCA cycle of BL21 does contribute significantly more to cofactor production, and 

the increased use of oxidative phosphorylation results in a higher overall ATP yield. 
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3.4. Principal component analysis and flux balance analysis 

To further assess the degree of similarity between the metabolic flux profiles of the investigated 

strains, principal component analysis (PCA) was performed using nine key normalized fluxes in 

central carbon metabolism. PCA is a data reduction technique in which large multivariate data 

sets can be described in a new lower dimensional space in terms of principal components, which 

are linear combinations of the original variables. These principal components capture the 

maximum amount of original variation in the data. The results of PCA are shown in Fig. 6. The 

fluxes used for the analysis were selected from various representative intracellular and 

extracellular pathways, and excluded those with minimal flux (e.g. the ED pathway or glyoxylate 

shunt) where the inter-strain variance was not meaningful. The first two principal components 

capture nearly all (95%) of the flux variation, with PC1 (52%) reflecting the lower metabolism 

split between acetate production and the TCA cycle, and PC2 (43%) the upper split between 

glycolysis and oxPPP. This confirms our analysis above in Fig. 3, suggesting that these were the 

major areas of flux variance among the strains. All the K-12 strains, including BW25113, the 

MG1655 wild-type and ALE strains, clustered together in the PCA plot. ALE-6 was positioned 

at the extreme end of the group with a high PC1 value, reflecting its particularly low TCA cycle 

and high acetate flux, while BL21 was positioned at the opposite end with a low PC1 value. 

 

We were also interested to compare the flux phenotypes of the adaptively evolved strains to an 

as predicted by flux balance analysis (FBA), a widely-used tool in 

metabolic engineering. FBA finds a set of fluxes that optimizes the maximal growth rate given 

substrate uptake constraints, the genome scale network stoichiometry, and a biomass growth 
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equation. This is commonly justified as reflecting the selection pressure and result of evolution 

in laboratory strains (Edwards and Palsson, 2000; García Sánchez and Torres Sáez, 2014; Segre 

et al., 2002). FBA calculations were performed using the E. coli iAF1260 genome scale model 

(Feist et al., 2007) with two sets of glucose and oxygen uptake constraints (all others were set to 

simulate the glucose minimal media environment): one corresponding to the MG1655 wild-type 

(qglc=8.5 mmol/gDW/h, qO2=12 mmol/gDW/h), and one corresponding to the ALE strains (qglc=12, 

qO2=17). The predicted growth rates from FBA agreed well with the measured growth rates (i.e., 

unevolved predicted 0.63 h-1, and evolved predicted 0.92 h-1) and acetate yields (unevolved 0.7 

mol/mol, evolved 0.63 mol/mol). The corresponding normalized flux predictions from FBA were 

included in the PCA plot (Fig. 6). There were some notable disagreements between the predicted 

and measured metabolic fluxes, especially in upper metabolism, where FBA predicted in both 

cases (i.e. unevolved and evolved scenarios) that approximately half of glucose flux was 

catabolized through oxPPP (54-55%). As discussed previously and shown in Figs. 3 and 4, this 

flux was measured by 13C-MFA as 21-25% of glucose flux in all strains studied here. Since the 

measured and FBA-predicted growth rates agreed well, it appears that the optimal growth rate is 

not strongly affected by upper pathway usage and alternate optimal solutions may enable the 

observed growth rates. 

 

The hypothesis of alternate optimal solutions was confirmed with flux variability analysis (FVA) 

(Mahadevan and Schilling, 2003), which calculates a range of possible flux values that can 

support a given rate of growth. FVA was applied to both sets of glucose and oxygen uptake rate 

constraints, yielding very similar normalized flux variabilities in each case. The results described 

below are from the higher uptake rate case, corresponding to the ALE phenotype. Focusing again 
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on the oxPPP flux, stepping down the optimal growth constraint slightly to 99% of the optimal 

growth rate, the oxPPP flux varied from 34%-67% of glucose uptake. Stepping down further, 

this range increased to 14-74% of glucose uptake for 98% of optimal growth rate. Interestingly, 

in looking at another major central metabolic pathway, the branch point between the TCA cycle 

and acetate production, was more constrained: the citrate synthase (TCA) fluxes varied only 

from 8-19% at 99% optimal growth, and 8-27% at 98% optimal growth. Thus, these results 

demonstrate that alternate optimal flux distributions can support rapid of E. coli and some 

pathways have more flexibility than others.   

 

4. CONCLUSIONS 

In this work, intracellular fluxes of E. coli subject to adaptive laboratory evolution were analyzed 

for the first time using 13C-MFA. Given the numerous genetic mutations (Sandberg et al., 2016) 

and previously reported transcriptional changes in evolved strains (LaCroix et al., 2015), it was 

expected that significant intracellular metabolic rewiring would be occurring in these strains. 

Instead, we show here that normalized intracellular metabolic fluxes change very little in six 

independently evolved MG1655 strains. In absolute terms, intracellular fluxes increased 

proportionally and substantially, along with the glucose uptake rate, to support faster growth. 

The one significant change, a 26% increase in acetate yield in ALE-6, corresponded to a unique 

set of mutations. Interestingly, it was previously reported that in similarly evolved strains, 

enzymes involved in the TCA cycle were broadly transcriptionally repressed (LaCroix et al., 

2015), but this did not correspond to reductions in normalized (5 out of 6 strains) or absolute (6 

out of 6) TCA fluxes in the strains analyzed here. Future studies may explore whether some TCA 

cycle enzymes (or others in central metabolism) have excess flux capacity in the wild-type, 

allowing for increases in absolute flux under certain conditions without commensurate increases 
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in expression. Overall, it was found that the magnitude of the differences between wild-type E. 

coli strains, particularly between BL21 and the K-12 strains (MG1655 and BW25113), exceeded 

the variation in unevolved and adaptively evolved MG1655 strains. The broad similarities, but 

notable differences between E. coli strains, should further inform analyses of cell metabolism 

rigidity across species (Tang et al., 2009; Wu et al., 2016). 

 

Principal component analysis of the differences in normalized intracellular fluxes highlighted the 

similarity between all K-12 strains and the uniqueness of BL21 strain. It also showed that the 

particular solution found using FBA optimization of the growth rate function predicted a high 

oxPPP flux, differing significantly from that measured here using 13C-MFA. This apparently 

reflects alternate optima or near-optima, which was further supported through FVA. While 

growth rate optimization is a commonly used objective function, and reflects the selective 

pressure in the ALE experiment, alternative objective functions could also be explored (García 

Sánchez and Torres Sáez, 2014; Schuetz et al., 2007). Overall, in the case of K-12 MG1655, 13C-

MFA demonstrated there was no strong selective pressure to change fluxes from the starting flux 

distribution. As the research community accumulates more results for adaptively evolved strains 

with different initial metabolic phenotypes (e.g. different wild-type or gene knockout strains 

(Fong et al., 2006)), it may become possible to elucidate the path dependency of the evolved 

a For example, it would be interesting to determine whether the 

high TCA flux of BL21 strain is reduced upon evolution or is maintained during fast growth. 

 

The knowledge that faster growth of adaptively evolved strains was not enabled by any particular 

change in metabolic pathway usage adds some clarity to the picture previously presented via 
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genetic and transcriptomic analysis (LaCroix et al., 2015). Along with increases in protein 

producing machinery, i.e. transcription and translation, changes to expression levels of central 

carbon metabolic enzymes were also reported. These included increases in PTS glucose 

transporters, enzymes in glycolysis and acetate production, and decreases in TCA cycle and 

glyoxylate shunt enzymes. The fact that the overall state of the metabolic network remained the 

same, despite adjustment in expression of metabolic enzymes, may indicate that the adaptive 

evolution responses are a matter of proteomic allocation rather than optimization of cellular 

processes. For example, the rpoB mutation has been shown to affect the balance between growth 

and stress functions (Utrilla et al., 2016). Moving forward, combined multi-omics analysis of 

ALE strains will be useful in advancing cellular modeling of kinetics (Khodayari et al., 2014) 

and physical and macromolecular constraints on phenotype . Identifying a 

growth-optimal proteome and regulatory mechanisms by which it can be achieved will be useful 

in engineering efficient strains. Understanding the hard constraints of E. coli performance, which 

in addition to the proteome can also include membrane space limitations (Liu et al., 2014), may 

motivate the development of alternative high-performance organisms for future applications 

(Cordova et al., 2015; Lee et al., 2016). 
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FIGURE LEGENDS 

Figure 1. Physiology of all strains during exponential growth on glucose minimal medium. The 

three E. coli wild-type strains, BL21 (green), BW25113 (red), and MG1655 (blue) are shown 

along with the adaptively evolved MG1655 strains (ALE, dark blue). Growth rates (A) were 

measured in triplicate cultures, and acetate yields (B) on media HPLC measurements of duplicate 

cultures. Error bars indicate standard errors of the mean. Biomass yield (C) was based on 

regression of substrate and biomass measurements in a culture, with error bars reflecting the 

uncertainty in the parameter fitting. 

 

Figure 2. Substrate uptake rates of all strains during exponential growth on glucose minimal 

medium. The three E. coli wild-type strains, BL21 (green), BW25113 (red), and MG1655 (blue) 

are shown along with the adaptively evolved MG1655 strains (ALE, dark blue). Glucose uptake 

rates (A) were calculated from the growth rate and biomass yield (Fig. 1), and oxygen uptake 

rate (B) was estimated by 13C-MFA. Error bars reflect standard errors. 

 

Figure 3. Key flux branch points for all strains as measured by 13C-MFA. The upper flux branch 

point (A) reflects the fate of glucose into one of the EMP pathway (glycolysis), the oxidative 

pentose phosphate pathway (oxPPP) or the ED pathway. The lower branch point shown (B) 

reflects the fate of phosphoenolpyruvate (PEP) into anaplerosis, the TCA cycle via citrate 

synthase, or to acetate production. Error bars reflect the 95% confidence interval of the flux 

estimates. 
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Figure 4. Complete flux maps of selected strains. All fluxes in central carbon metabolism are 

shown for the BL21 strain, as well as the wild-type MG1655 and one of its evolved descendants 

(ALE-6). Growth and glucose uptake rates for each strain are listed above, and all intracellular 

fluxes shown are then normalized to 100 units of glucose uptake. The indicated uncertainties for 

fluxes represent standard errors of the estimates.  

 

Figure 5. Quantitative cofactor balances. For each strain, the contributions of metabolic 

pathways to the production and consumption of cofactors are calculated in absolute units. 

Positive values reflect production of cofactor, and negative values reflect consumption. Shown 

are balances for NADH/FADH2 

panel represents the estimated ATP maintenance cost (here, assuming P/O ratio=2.0). 

 

Figure 6. Principal component analysis of key normalized intracellular metabolic fluxes in 

measured strains and two flux balance analysis (FBA) simulations. The simulations were based 

on two different sets of substrate uptake constraints as noted. The coefficients of the top two 

principal components are shown in the table.  
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Fig. 5 
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Fig. 6 

 

 13C-Fluxes were measured for 3 wild-type E. coli strains and 6 adaptively evolved E. coli 
strains 

 Faster growth of evolved strains was not enabled by any particular change in metabolic 
pathway usage 

 Inter-strain flux differences were greater than differences between the parental and evolved 
strains 

 Only one strain with a unique set of genetic mutations showed a small degree of flux rewiring  
 Flux balance analysis overestimated the flux of oxidative pentose phosphate pathway in all 

strains 

 

 


