2,358 research outputs found

    Anomaly-free U(1) gauge symmetries in neutrino seesaw flavor models

    Full text link
    Adding right-handed neutrino singlets and/or fermion triplets to the particle content of the Standard Model allows for the implementation of the seesaw mechanism to give mass to neutrinos and, simultaneously, for the construction of anomaly-free gauge group extensions of the theory. We consider Abelian extensions based on an extra U(1)_X gauge symmetry, where X is an arbitrary linear combination of the baryon number B and the individual lepton numbers L_{e,mu,tau}. By requiring cancellation of gauge anomalies, we perform a detailed analysis in order to identify the charge assignments under the new gauge symmetry that lead to neutrino phenomenology compatible with current experiments. In particular, we study how the new symmetry can constrain the flavor structure of the Majorana neutrino mass matrix, leading to two-zero textures with a minimal extra fermion and scalar content. The possibility of distinguishing different gauge symmetries and seesaw realizations at colliders is also briefly discussed.Comment: 12 pages, 2 figures, 7 tables; comments and references added, a new subsection with nonstandard interactions of neutrinos included; final version to appear in Phys. Rev.

    Minimal anomaly-free chiral fermion sets and gauge coupling unification

    Full text link
    We look for minimal chiral sets of fermions beyond the standard model that are anomaly free and, simultaneously, vectorlike particles with respect to colour SU(3) and electromagnetic U(1). We then study whether the addition of such particles to the standard model particle content allows for the unification of gauge couplings at a high energy scale, above 5.0×10155.0 \times 10^{15} GeV so as to be safely consistent with proton decay bounds. The possibility to have unification at the string scale is also considered. Inspired in grand unified theories, we also search for minimal chiral fermion sets that belong to SU(5) multiplets. Restricting to representations up to dimension 50, we show that some of these sets can lead to gauge unification at the GUT and/or string scales.Comment: 13 pages, 5 figures, 8 tables; Comments and references added, final version to appear in Phys. Rev.

    Snow crab (Chionoecetes opilio) hemocytes and hepatopancreas transcriptomes: identification, validation, and application of immune-relevant biomarkers of exposure to noise

    Get PDF
    The snow crab (Chionoecetes opilio) fishery off the east coast of Newfoundland and Labrador, Canada, has been impacted by annual seismic oil and gas surveying in recent decades, and commercial crab harvesters are concerned that it could potentially affect this resource. A laboratory study was performed to investigate the effects of chronic noise exposure on the transcriptomes of snow crab hemocytes and hepatopancreas, which are important in immunity, metabolism and response to environmental stress. Snow crab were held in replicate control or experimental tanks; on alternating days, the experimental tanks were exposed to noise from an underwater speaker which played a recording of a seismic airgun firing every 10 sec in a continuous loop for ~ 22 weeks (chronic noise). RNA sequencing was used to identify candidate noise-responsive molecular biomarkers in both hemocytes and hepatopancreas. The quantified transcripts of individuals (i.e. n=10 from each of the four groups) were compared using DESeq2, identifying over 300 noise-responsive transcripts in each cell/tissue type. Real-time quantitative polymerase chain reaction (qPCR) assays were designed and run for 61 of these transcripts with significant BLASTx hits. One transcript (rgs2) was significantly (p < 0.05) higher expressed in both hemocytes and hepatopancreas in response to noise; five and seven other transcripts were either significant or showed a non-significant trend of differential expression (0.05 < p ≤ 0.1) in hemocytes (e.g. cfb upregulated, sacs and myof downregulated) and hepatopancreas (e.g. gpx3 and atf3 upregulated, sult1c4 downregulated), respectively. To further investigate the performance and utility of these candidate biomarkers in the field, expression levels of 25 selected transcripts were then examined in the hepatopancreas of snow crab that had been subjected to 2D and 3D seismic surveying using both qPCR and multivariate statistical analyses. Overall, few of these biomarkers showed consistent results in field-collected snow crab, highlighting the need to combine lab and field-based studies to fully evaluate the utility of biomarkers. Nonetheless, our study still identified noise-responsive biomarkers in both settings (including stress and immune relevant genes), providing valuable information for understanding the impact of ocean noise on snow crab physiology and health

    Phase-space analysis of interacting phantom cosmology

    Full text link
    We perform a detailed phase-space analysis of various phantom cosmological models, where the dark energy sector interacts with the dark matter one. We examine whether there exist late-time scaling attractors, corresponding to an accelerating universe and possessing dark energy and dark matter densities of the same order. We find that all the examined models, although accepting stable late-time accelerated solutions, cannot alleviate the coincidence problem, unless one imposes a form of fine-tuning in the model parameters. It seems that interacting phantom cosmology cannot fulfill the basic requirement that led to its construction.Comment: 6 figures, use revtex, v2: minor corrections, references added, accepted for publication in JCA

    Community-based models of care for management of type 2 diabetes mellitus among non-pregnant adults in sub-Saharan Africa: a scoping review protocol

    Get PDF
    Background:; The burden of type 2 diabetes mellitus (T2DM) is increasing in low- and middle-income countries, including sub-Sahara Africa (SSA). However, awareness of and access to T2DM diagnosis and care remain low in SSA, leading to delayed treatment, early morbidity, and mortality. Particularly in rural settings with long distances to health care facilities, community-based care models may contribute to increased timely diagnosis and care. This scoping review aims to summarize and categorize existing models of community-based care for T2DM among non-pregnant adults in SSA, and to synthesize the evidence on acceptance, clinical outcomes, and engagement in care.; Method and analysis:; This review will follow the framework suggested by Arskey and O'Malley, which has been further refined by Levac; et al.; and the Joanna Briggs Institute. Electronic searches will be performed in Medline, Embase, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and Scopus, supplemented with backward and forward citation searches. We will include cohort studies, randomized trials and case-control studies that report cases of non-pregnant individuals diagnosed with T2DM in SSA who receive a substantial part of care in the community. Our outcomes of interest will be model acceptability, blood sugar control, end organ damage, and patient engagement in care. A narrative analysis will be conducted, and comparisons made between community-based and facility-based models, where within-study comparison is reported.; Conclusion:; Care for T2DM has become a global health priority. Community-based care may be an important add-on approach especially in populations with poor access to health care facilities. This review will inform policy makers and program implementers on different community-based models for care of T2DM in SSA, and critically appraise their acceptability and clinical outcomes. It will further identify evidence gaps and future research priorities in community-based T2DM care

    Neutrino Oscillations v.s. Leptogenesis in SO(10) Models

    Full text link
    We study the link between neutrino oscillations and leptogenesis in the minimal framework assuming an SO(10) see-saw mechanism with 3 families. Dirac neutrino masses being fixed, the solar and atmospheric data then generically induce a large mass-hierarchy and a small mixing between the lightest right-handed neutrinos, which fails to produce sufficient lepton asymmetry by 5 orders of magnitudes at least. This failure can be attenuated for a very specific value of the mixing sin^2(2\theta_{e3})=0.1, which interestingly lies at the boundary of the CHOOZ exclusion region, but will be accessible to future long baseline experiments.Comment: 23 pages, 8 eps figures, JHEP3 format; more accurate effect of dilution reduces previous results, inclusion of all phases, added reference

    Host proteostasis modulates influenza evolution

    Get PDF
    Predicting and constraining RNA virus evolution require understanding the molecular factors that define the mutational landscape accessible to these pathogens. RNA viruses typically have high mutation rates, resulting in frequent production of protein variants with compromised biophysical properties. Their evolution is necessarily constrained by the consequent challenge to protein folding and function. We hypothesized that host proteostasis mechanisms may be significant determinants of the fitness of viral protein variants, serving as a critical force shaping viral evolution. Here, we test that hypothesis by propagating influenza in host cells displaying chemically-controlled, divergent proteostasis environments. We find that both the nature of selection on the influenza genome and the accessibility of specific mutational trajectories are significantly impacted by host proteostasis. These findings provide new insights into features of host-pathogen interactions that shape viral evolution, and into the potential design of host proteostasis-targeted antiviral therapeutics that are refractory to resistance.National Institutes of Health (U.S.) (Award 1DP2GM119162)National Institutes of Health (U.S.) (Grant P30-ES002109

    New agegraphic dark energy in Horava-Lifshitz cosmology

    Full text link
    We investigate the new agegraphic dark energy scenario in a universe governed by Horava-Lifshitz gravity. We consider both the detailed and non-detailed balanced version of the theory, we impose an arbitrary curvature, and we allow for an interaction between the matter and dark energy sectors. Extracting the differential equation for the evolution of the dark energy density parameter and performing an expansion of the dark energy equation-of-state parameter, we calculate its present and its low-redshift value as functions of the dark energy and curvature density parameters at present, of the Horava-Lifshitz running parameter λ\lambda, of the new agegraphic dark energy parameter nn, and of the interaction coupling bb. We find that w0=0.820.08+0.08w_0=-0.82^{+0.08}_{-0.08} and w1=0.080.07+0.09w_1=0.08^{+0.09}_{-0.07}. Although this analysis indicates that the scenario can be compatible with observations, it does not enlighten the discussion about the possible conceptual and theoretical problems of Horava-Lifshitz gravity.Comment: 17 pages, no figures, version published at JCA

    Quantic Analysis of Formation of a Biomaterial of Latex, Retinol, and Chitosan for Biomedical Applications

    Full text link
    The present work shows the quantum theoretical analysis and practical tests for the formation of a homogeneous mixture with Latex (Lx), Chitosan (Qn) and Retinol (Rl), which work as possible biomaterial for regeneration of epithelial tissue. Lx, Qn, and Rl compounds molecules were designed through Hyperchem to get the coefficient of electrostatic potential calculations. The amounts used to create the biomaterial are minimum depending on the quantities of molecules used in chemical design. A positive calculation was obtained for the reaction of these three compounds and the formation of the biomaterial in physical checking theory etc

    Phase-Space analysis of Teleparallel Dark Energy

    Full text link
    We perform a detailed dynamical analysis of the teleparallel dark energy scenario, which is based on the teleparallel equivalent of General Relativity, in which one adds a canonical scalar field, allowing also for a nonminimal coupling with gravity. We find that the universe can result in the quintessence-like, dark-energy-dominated solution, or to the stiff dark-energy late-time attractor, similarly to standard quintessence. However, teleparallel dark energy possesses an additional late-time solution, in which dark energy behaves like a cosmological constant, independently of the specific values of the model parameters. Finally, during the evolution the dark energy equation-of-state parameter can be either above or below -1, offering a good description for its observed dynamical behavior and its stabilization close to the cosmological-constant value.Comment: 23 pages, 4 figures, 5 tables, version published at JCA
    corecore