20 research outputs found

    Discovery of a redshift 6.13 quasar in the UKIRT infrared deep sky survey

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO) DOI: 10.1051/0004-6361/200811161Optical and near-infrared (NIR) spectra are presented for ULAS J131911.29+095051.4 (hereafter ULAS J1319+0950), a new redshift z = 6.127 0.004 quasar discovered in the Third Data Release (DR3) of the UKIRT Infrared Deep Sky Survey (UKIDSS). The source has = 19.10 0.03, corresponding to = -27.12, which is comparable to the absolute magnitudes of the z 6 quasars discovered in the Sloan Digital Sky Survey (SDSS). ULAS J1319+0950 was, in fact, registered by SDSS as a faint source with = 20.13 0.12, just below the signal-to-noise ratio limit of the SDSS high-redshift quasar survey. The faint z-band magnitude is a consequence of the weak Ly /N V emission line, which has a rest-frame equivalent width of ~20Å and provides only a small boost to the z-band flux. Nevertheless, there is no evidence of a significant new population of high-redshift quasars with weak emission lines from this UKIDSS-based search. The Ly  optical depth to ULAS J1319+0950 is consistent with that measured towards similarly distant SDSS quasars, implying that results from optical- and NIR-selected quasars may be combined in studies of cosmological reionization. Also presented is a new NIR-spectrum of the previously discovered UKIDSS quasar ULAS J020332.38+001229.2, which reveals the object to be a broad absorption line quasar. The new spectrum shows that the emission line initially identified as Ly  is actually N V, leading to a revised redshift of z = 5.72, rather than z = 5.86 as previously estimatedPeer reviewe

    TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images

    Get PDF
    We present the discovery and characterization of five hot and warm Jupiters - TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b (TIC 139375960) - based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R P = 1.01-1.77 R J) and have masses that range from 0.85 to 6.33 M J. The host stars of these systems have F and G spectral types (5595 ≤ T eff ≤ 6460 K) and are all relatively bright (9.5 1.7 R J, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31-0.30+0.28 M J and a statistically significant, nonzero orbital eccentricity of e = 0.074-0.022+0.021. This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals

    TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    Stars and planetary system

    TOI-431/HIP 26013: A super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    We present the bright (Vmag = 9.12), multiplanet system TOI-431, characterized with photometry and radial velocities (RVs). We estimate the stellar rotation period to be 30.5 ± 0.7 d using archival photometry and RVs. Transiting Exoplanet Survey Satellite (TESS) objects of Interest (TOI)-431 b is a super-Earth with a period of 0.49 d, a radius of 1.28 ± 0.04 R, a mass of 3.07 ± 0.35 M, and a density of 8.0 ± 1.0 g cm-3; TOI-431 d is a sub-Neptune with a period of 12.46 d, a radius of 3.29 ± 0.09 R, a mass of 9.90+1.53-1.49 M, and a density of 1.36 ± 0.25 g cm-3. We find a third planet, TOI-431 c, in the High Accuracy Radial velocity Planet Searcher RV data, but it is not seen to transit in the TESS light curves. It has an Msin i of 2.83+0.41-0.34 M, and a period of 4.85 d. TOI-431 d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterization, while the super-Earth TOI-431 b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431 b is a prime TESS discovery for the study of rocky planet phase curves

    An integrated multi-study analysis of intra-subject variability in cerebrospinal fluid amyloid-beta concentrations collected by lumbar puncture and indwelling lumbar catheter

    Get PDF
    Contains fulltext : 154021.pdf (publisher's version ) (Open Access)INTRODUCTION: Amyloid-beta (Abeta) has been investigated as a diagnostic biomarker and therapeutic drug target. Recent studies found that cerebrospinal fluid (CSF) Abeta fluctuates over time, including as a diurnal pattern, and increases in absolute concentration with serial collection. It is currently unknown what effect differences in CSF collection methodology have on Abeta variability. In this study, we sought to determine the effect of different collection methodologies on the stability of CSF Abeta concentrations over time. METHODS: Grouped analysis of CSF Abeta levels from multiple industry and academic groups collected by either lumbar puncture (n=83) or indwelling lumbar catheter (n=178). Participants were either placebo or untreated subjects from clinical drug trials or observational studies. Participants had CSF collected by lumbar puncture or lumbar catheter for quantitation of Abeta concentration by enzyme linked immunosorbent assay. Data from all sponsors was converted to percent of the mean for Abeta40 and Abeta42 for comparison. Repeated measures analysis of variance was performed to assess for factors affecting the linear rise of Abeta concentrations over time. RESULTS: Analysis of studies collecting CSF via lumbar catheter revealed tremendous inter-subject variability of Abeta40 and Abeta42 as well as an Abeta diurnal pattern in all of the sponsors' studies. In contrast, Abeta concentrations from CSF samples collected at two time points by lumbar puncture showed no significant differences. Repeated measures analysis of variance found that only time and draw frequency were significantly associated with the slope of linear rise in Abeta40 and Abeta42 concentrations during the first 6 hours of collection. CONCLUSIONS: Based on our findings, we recommend minimizing the frequency of CSF draws in studies measuring Abeta levels and keeping the frequency standardized between experimental groups. The Abeta diurnal pattern was noted in all sponsors' studies and was not an artifact of study design. Averaging Abeta concentrations at each time point is recommended to minimize the effect of individual variability. Indwelling lumbar catheters are an invaluable research tool for following changes in CSF Abeta over 24-48 hours, but factors affecting Abeta concentration such as linear rise and diurnal variation need to be accounted for in planning study designs
    corecore