24 research outputs found

    Lung Transplant Improves Survival and Quality of Life Regardless of Telomere Dysfunction

    Get PDF
    Introduction: Fibrotic interstitial lung diseases (ILDs) are the first indication for lung transplantation (LT). Telomere dysfunction has been associated with poor post-transplant outcomes. The aim of the study was to evaluate the morbi-mortality and quality of life in fibrotic ILDs after lung transplant depending on telomere biology. Methods: Fibrotic ILD patients that underwent lung transplant were allocated to two arms; with or without telomere dysfunction at diagnosis based on the telomere length and telomerase related gene mutations revealed by whole-exome sequencing. Post-transplant evaluation included: (1) short and long-term mortality and complications and (2) quality of life. Results: Fifty-five percent of patients that underwent LT carried rare coding mutations in telomerase-related genes. Patients with telomere shortening more frequently needed extracorporeal circulation and presented a higher rate of early post-transplant hematological complications, longer stay in the intensive care unit (ICU), and a higher number of long-term hospital admissions. However, post-transplant 1-year survival was higher than 80% regardless of telomere dysfunction, with improvement in the quality of life and oxygen therapy withdrawal. Conclusions: Post-transplant morbidity is higher in patients with telomere dysfunction and differs according to elapsed time from transplantation. However, lung transplant improves survival and quality of life and the associated complications are manageable

    Transactive Response DNA-Binding Protein (TARDBP/TDP-43) Regulates Cell Permissivity to HIV-1 Infection by Acting on HDAC6

    Get PDF
    The transactive response DNA-binding protein (TARDBP/TDP-43) influences the processing of diverse transcripts, including that of histone deacetylase 6 (HDAC6). Here, we assessed TDP-43 activity in terms of regulating CD4+ T-cell permissivity to HIV-1 infection. We observed that overexpression of wt-TDP-43 increased both mRNA and protein levels of HDAC6, resulting in impaired HIV-1 infection independently of the viral envelope glycoprotein complex (Env) tropism. Consistently, using an HIV-1 Env-mediated cell-to-cell fusion model, the overexpression of TDP-43 levels negatively affected viral Env fusion capacity. Silencing of endogenous TDP-43 significantly decreased HDAC6 levels and increased the fusogenic and infection activities of the HIV-1 Env. Using pseudovirus bearing primary viral Envs from HIV-1 individuals, overexpression of wt-TDP-43 strongly reduced the infection activity of Envs from viremic non-progressors (VNP) and rapid progressors (RP) patients down to the levels of the inefficient HIV-1 Envs observed in long-term non-progressor elite controllers (LTNP-EC). On the contrary, silencing endogenous TDP-43 significantly favored the infectivity of primary Envs from VNP and RP individuals, and notably increased the infection of those from LTNP-EC. Taken together, our results indicate that TDP-43 shapes cell permissivity to HIV-1 infection, affecting viral Env fusion and infection capacities by altering the HDAC6 levels and associated tubulin-deacetylase anti-HIV-1 activity.This work is supported by the Spanish AIDS network “Red Temática Cooperativa de Investigación en SIDA” RD12/0017/0002, RD12/0017/0028, RD12/0017/0034, RD16/0025/0011, RDCIII16/0002/0005 and RD16/0025/0041 as part of the Plan Nacional R + D+I and co-funded by the Spanish “Instituto de Salud Carlos III (ISCIII)-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER)”. J.B. is a researcher from “Fundació Institut de Recerca en Ciències de la Salut Germans Trias i Pujol” supported by the Health Department of the Catalonian Government/Generalitat de Catalunya and ISCIII grant numbers PI17/01318 and PI20/00093 (to J.B.). Work in CC Lab was supported by grants SAF (2010-17226) and (2016-77894-R) from MINECO (Spain), FIS (PI 13/02269, ISCIII) and PI20/00093. Work in CF Lab was supported by the Cabildo Insular de Tenerife (grants CGIEU0000219140 and “Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19”); the agreement with the Instituto Tecnológico y de Energías Renovables (ITER) to strengthen scientific and technological education, training research, development and innovation in Genomics, Personalized Medicine and Biotechnology (grant number OA17/008). A.V.-F.’s Lab is supported by the European Regional Development Fund (ERDF), RTI2018-093747-B-100 (“Ministerio de Ciencia e Innovación”, Spain), “Ministerio de Ciencia, Innovación y Universidades” (Spain), ProID2020010093 (“Agencia Canaria de Investigación, Innovación y Sociedad de la Información” and European Social Fund), UNLL10-3E-783 (ERDF and “Fundación CajaCanarias”) and “SEGAI-ULL”. S.P-Y is funded by “Fundación Doctor Manuel Morales” (La Palma, Spain) and “Contrato Predoctoral Ministerio-ULL Formación de Doctores” (2019 Program) (“Ministerio de Ciencia, Innovación y Universidades”, Spain). R.C.-R. is funded by RD16/0025/0011 and ProID2020010093 (“Agencia Canaria de Investigación, Innovación y Sociedad de la Información” and European Social Fund). J.G.-L. is funded by the “Juan de la Cierva de Incorporación” Spanish Program (IJC2019-038902-I) (“Ayudas Juan de la Cierva de incorporación; Agencia Estatal de Investigación. Ministerio de Ciencia e Innovación”).S

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    PKCα-Mediated Downregulation of RhoA Activity in Depolarized Vascular Smooth Muscle: Synergistic Vasorelaxant Effect of PKCα and ROCK Inhibition

    No full text
    Background/Aims: Protein kinase C (PKC)- and RhoA/Rho-associated kinase (ROCK) play important roles in arterial sustained contraction. Although depolarization-elicited RhoA/ROCK activation is accepted, the role of PKC in depolarized vascular smooth muscle cells (VSMCs) is a subject of controversy. Our aim was to study the role of PKC in arterial contraction and its interaction with RhoA/ROCK. Methods: Mass spectrometry was used to identify the PKC isoenzymes. PKCα levels and RhoA activity were analyzed by western blot and G-LISA, respectively, and isometric force was measured in arterial rings. Results: In depolarized VSMCs RhoA and PKCα were translocated to the plasma membrane, where they colocalize and coimmunoprecipitate. Interestingly, depolarization-induced RhoA activation was downregulated by PKCα, effect reverted by PKCα inhibition. Phorbol 12,13-dibutyrate (PDBu) induced the translocation of PKCα to the plasma membrane, increased the level of RhoA in the cytosol and reduced RhoA/ROCK activity. These effects were reverted when PKC was inhibited. Pharmacological or siRNA inhibition of PKCα synergistically potentiated the vasorelaxant effect of RhoA/ROCK inhibition. Conclusion: The present study provides the first evidence that RhoA activity is downregulated by PKCα in depolarized and PDBu treated freshly isolated VSMCs and arteries, with an important physiological role on arterial contractility

    From Samples to Germline and Somatic Sequence Variation: A Focus on Next-Generation Sequencing in Melanoma Research

    No full text
    Next-generation sequencing (NGS) applications have flourished in the last decade, permitting the identification of cancer driver genes and profoundly expanding the possibilities of genomic studies of cancer, including melanoma. Here we aimed to present a technical review across many of the methodological approaches brought by the use of NGS applications with a focus on assessing germline and somatic sequence variation. We provide cautionary notes and discuss key technical details involved in library preparation, the most common problems with the samples, and guidance to circumvent them. We also provide an overview of the sequence-based methods for cancer genomics, exposing the pros and cons of targeted sequencing vs. exome or whole-genome sequencing (WGS), the fundamentals of the most common commercial platforms, and a comparison of throughputs and key applications. Details of the steps and the main software involved in the bioinformatics processing of the sequencing results, from preprocessing to variant prioritization and filtering, are also provided in the context of the full spectrum of genetic variation (SNVs, indels, CNVs, structural variation, and gene fusions). Finally, we put the emphasis on selected bioinformatic pipelines behind (a) short-read WGS identification of small germline and somatic variants, (b) detection of gene fusions from transcriptomes, and (c) de novo assembly of genomes from long-read WGS data. Overall, we provide comprehensive guidance across the main methodological procedures involved in obtaining sequencing results for the most common short- and long-read NGS platforms, highlighting key applications in melanoma research

    Benchmarking of human Y-chromosomal haplogroup classifiers with whole-genome and whole-exome sequence data

    No full text
    In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data
    corecore