26 research outputs found

    Caracterización del estilo de vida y su relación con el Índice de Masa Corporal en estudiantes de la Licenciatura en Nutrición.

    Get PDF
    Introduction:During the university stage, as a result of the increase in academic activities, students experience unhealthy changes in their lifestyle habits. Objective: To characterize the lifestyle and its possible relationship with the Body Mass Index (BMI) in students of the Bachelor's Degree in Nutrition at the Autonomous University of Yucatan. Methods: Cross-sectional relational comparative study, with a convenience sample of 110 students of both sexes, the data were obtained through Nola Pender's PEPS-I survey. The information was collected through Microsoft Forms and the Chi-square test of independence was performed with the SPSS v.22 statistical package. Results: Of the participants, 78 were female (71.0%) and 32 were male (29.0%). Of the total, 51 students (46.4%) had a medium lifestyle and 77 students (70.0%) were normal weight according to the BMI. As a result of the statistical test, the independence between the variables analyzed was confirmed (p-value=0.598).   Conclusion: There is no statistically significant relationship between lifestyle levels and BMI ranges of the students.Introducción: Durante la etapa universitaria como resultado del incremento en las actividades académicas los estudiantes experimentan cambios pocos saludables en sus hábitos de vida. Objetivo:  Caracterizar el estilo de vida y su posible relación con el Índice de Masa Corporal (IMC) en estudiantes de la Licenciatura en Nutrición de la Universidad Autónoma de Yucatán. Métodos: Estudio comparativo relacional de tipo transversal, con una muestra a conveniencia de 110 estudiantes de ambos sexos, los datos fueron obtenidos a través de la encuesta PEPS-I de Nola Pender. La información fue recabada mediante Microsoft Forms y se realizó la prueba de independencia Chi-cuadrado con el paquete estadístico SPSS v.22. Resultados: De los participantes 78 fueron mujeres (71.0%) y 32 hombres (29.0%), del total, en 51 estudiantes (46.4%) predominó el estilo de vida medio y 77 estudiantes (70.0%) se encontraron en normopeso según el ÍMC. Como resultado de la prueba estadística se confirmó la independencia entre las variables analizadas (valor p=0.598).   Conclusión: No existe relación estadísticamente significativa entre los niveles del estilo de vida y los rangos de IMC de los estudiantes

    Agricultural waste as a sustainable source for nanoparticle synthesis and their antimicrobial properties for food preservation

    Get PDF
    Traditional agriculture from cropping to harvesting is contributing to climate change by increasing global greenhouse emissions. Circular economy approaches and biorefinery technologies based on the reuse, recycling, and remanufacturing might result in the valorization of wastes that consequently would avoid environmental pollution. Nanoparticles synthesis using bio-waste such as stems, leaves, seeds, pulp, stubble, and bagasse is considered a green approach with low energy consumption, and low-cost production. Characteristics of raw materials influence the final application of nanoparticles in edible coatings, and films. Therefore, the preparation of nanoparticles based on cellulose, pectin, metal (titanium oxide, silver, zinc oxide), or silica are considered organic, inorganic, or hybrid nanocomposites, are resulted in several benefits including shelf-life extension and broad-spectrum antimicrobial properties by its capacity to encapsulate active compounds that greatly improve food preservation. For considering agro-waste-based nanoparticles in food, challenges in homogenization and synthesis, yield, and toxicity are mainly described. Therefore, this review examines the employment of agro-industrial waste for the development of sustainable nanoparticles and their synthesis methods (top-down and bottom-up). Moreover, it discusses their incorporation and role in active edible coatings and films by highlighting their bioactive properties, mechanisms of action, and applications in food group preservation

    Expanding the Scope of Nanobiocatalysis and Nanosensing: Applications of Nanomaterial Constructs

    Get PDF
    The synergistic interaction between advanced biotechnology and nanotechnology has allowed the development of innovative nanomaterials. Those nanomaterials can conveniently act as supports for enzymes to be employed as nanobiocatalysts and nanosensing constructs. These systems generate a great capacity to improve the biocatalytic potential of enzymes by improving their stability, efficiency, and product yield, as well as facilitating their purification and reuse for various bioprocessing operating cycles. The different specific physicochemical characteristics and the supramolecular nature of the nanocarriers obtained from different economical and abundant sources have allowed the continuous development of functional nanostructures for different industries such as food and agriculture. The remarkable biotechnological potential of nanobiocatalysts and nanosensors has generated applied research and use in different areas such as biofuels, medical diagnosis, medical therapies, environmental bioremediation, and the food industry. The objective of this work is to present the different manufacturing strategies of nanomaterials with various advantages in biocatalysis and nanosensing of various compounds in the industry, providing great benefits to society and the environment.This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) and Tecnologico de Monterrey, Mexico under Sistema Nacional de Investigadores (SNI) program awarded to Rafael Gomes Araújo (CVU: 714118), Manuel Martínez Ruiz (CVU: 418151), Juan Eduardo Sosa Hernández (CVU: 375202), Roberto Parra Saldívar (CVU: 35753), and Hafiz M.N. Iqbal (CVU: 735340).Peer reviewe

    Environmental persistence, detection, and mitigation of endocrine disrupting contaminants in wastewater treatment plants – a review with a focus on tertiary treatment technologies

    Get PDF
    Endocrine disrupting chemicals are a group of contaminants that have severe effects on humans and animals when exposed, like cancer and alterations to the nervous and reproductive systems. The increasing concentrations of several endocrine disrupting chemicals in the environment are strongly related to anthropogenic activities, and as the population grows this problem becomes more relevant. Thus, wastewater is one of the main sources of endocrine disrupting chemicals, and the technologies employed during primary and secondary treatment in wastewater treatment plants cannot remove these contaminants. Due to this, researchers have tried to develop more efficient technologies for tertiary treatment of wastewater and reduce the concentration of endocrine disrupting chemicals discharged into the environment. Some of the most promising technologies include adsorption, ultrafiltration, advanced oxidation processes and biodegradation. The use of nanomaterials as adsorbents, catalysts, membranes and supports has played a key role in enhancing the efficiency of these technologies. The results showed that these technologies have great potential on the lab-scale, and even some of them have already been employed at some wastewater treatment plants. However, there are still some challenges to achieving a global implementation of these technologies, related to reducing the costs of materials and enhancing their current performance. The use of biomass/waste derived carbon materials and implementing hybrid technologies are accessible approaches for their implementation in tertiary treatment.This work is part of the project entitled “Contaminantes emergentes y prioritarios en las aguas reutilizadas en agricultura: riesgos y efectos en suelos, producción agrícola y entorno ambiental” funded by CSIC-Tecnológico de Monterrey under the i-Link + program (LINKB20030). The author “Jesús Alfredo Rodríguez-Hernández” acknowledges Consejo Nacional de Ciencia y Tecnología (CONACyT) for awarding a scholarship for a PhD in nanotechnology (CVU: 924193). CONACyT is thankfully acknowledged for partially supporting this work under the Sistema Nacional de Investigadores (SNI) program awarded to Rafael G. Araújo (CVU: 714118), Juan Eduardo Sosa-Hernández (CVU: 375202), Elda M. Melchor-Martínez (CVU: 230784), Manuel Martinez-Ruiz (CVU: 418151), Hafiz M. N. Iqbal (CVU: 735340) and Roberto Parra-Saldívar (CVU: 35753). The authors are also thankful to “Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo” in the Latin American development network “Lacasas Inmovilizadas para la Degradación de Compuestos Aromáticos en Aguas Residuales” (LIDA, project 318RT0552). All listed authors are also grateful to their representative universities/institutes for providing literature facilities and the Biorender online program for the elaboration of the graphical abstract and Fig. 1–5.Peer reviewe

    Detection and Tertiary Treatment Technologies of Poly-and Perfluoroalkyl Substances in Wastewater Treatment Plants

    Get PDF
    PFAS are a very diverse group of anthropogenic chemicals used in various consumer and industrial products. The properties that characterize are their low degradability as well as their resistance to water, oil and heat. This results in their high persistence in the environment and bioaccumulation in different organisms, causing many adverse effects on the environment as well as in human health. Some of their effects remain unknown to this day. As there are thousands of registered PFAS, it is difficult to apply traditional technologies for an efficient removal and detection for all. This has made it difficult for wastewater treatment plants to remove or degrade PFAS before discharging the effluents into the environment. Also, monitoring these contaminants depends mostly on chromatography-based methods, which require expensive equipment and consumables, making it difficult to detect PFAS in the environment. The detection of PFAS in the environment, and the development of technologies to be implemented in tertiary treatment of wastewater treatment plants are topics of high concern. This study focuses on analyzing and discussing the mechanisms of occurrence, migration, transformation, and fate of PFAS in the environment, as well the main adverse effects in the environment and human health. The following work reviews the recent advances in the development of PFAS detection technologies (biosensors, electrochemical sensors, microfluidic devices), and removal/degradation methods (electrochemical degradation, enzymatic transformation, advanced oxidation, photocatalytic degradation). Understanding the risks to public health and identifying the routes of production, transportation, exposure to PFAS is extremely important to implement regulations for the detection and removal of PFAS in wastewater and the environment.This work is part of the project entitled “Contaminantes emergentes y prioritarios en las aguas reutilizadas en agricultura: riesgos y efectos en suelos, producción agrícola y entorno ambiental” funded by CSIC-Tecnológico de Monterrey under i-Link + program (LINKB20030).Peer reviewe

    Immobilized Enzyme-based Novel Biosensing System for Recognition of Toxic Elements in the Aqueous Environment

    Get PDF
    Access to secure water sources has become one of the biggest challenges for human sustainability. Climate change and associated droughts make it difficult to guarantee the usual water source and move to groundwater use or to the re-use of treated wastewater remains unviable due the lack on the capacity of monitoring water quality. Moreover, reusing treated wastewater from repositories near anthropogenic sources represents a risk of high concentrations of emerging contaminants. The strategies involve a higher risk of encountering toxic elements with a heavy burden on human and environmental health. New accessible and reliable tools are required to detect any hazard from the waterbodies in real time to ensure safe management and also to decrease mismanagement or ilegal water discharges. One of the available options is to look into enzyme-based biosensors that can detect toxic elements in the water. The proposed biosensors require sensible elements to be accessible and durable for their proper function. The present revision shows in first place, the actual need of real time monitoring due the different sources and effects of emergent pollutants. Secondly, describes how enzymes can be immobilized for its application in biosensors and the rol enzymes play as bioreceptor element in biosensing. Thirdly, describes the transduction methods that can be observed, and finally the actual application of enzyme biosensors for the detection of different toxic elements. According to the presented literature enzyme-based biosensors have been successfully applied for the detection of a wide number of pollutants reaching detection limits comparable to traditional methods such as up to 0.018 nM of mercury. Furthermore, laccase seems to be the more applied enzyme in literature, but positive results are not limited to this enzyme and other candidates have been explored showing good detection rate. Graphical Abstract: [Figure not available: see fulltext.].This research was funded by Fundación FEMSA project entitled “Unidad de respuesta rápida al monitoreo de COVID19 por agua residual” (Grant Number NA).Peer reviewe

    Broadening the scope of on-site detection and bioanalytical perspective of toxic elements using fluorescent sensing constructs

    No full text
    The pursuit of industrial and biotechnological revolutions has led to a growing problem of environmental pollution around the world. The fast-growing contamination of numerous environmental matrices is one of the major problems facing humanity due to the controlled and/or uncontrolled discharge of toxic elements from several industrial sectors. Due to several adverse consequences of persistent toxic elements, there is imperative to propose and deploy strategic measures and robust bioanalytical tools with greater efficiency and accuracy to detect a broader range of harmful pollutants. The expansion of pollution detecting tools can further aid real-time and on-site monitoring of the production and release of environmental contaminants in different industrial sectors. Considering the above critiques, the remarkable efforts of various regulatory/legalities authorities are urgently needed to tackle the growing environmental pollution dilemma efficiently. With key scientific and nanotechnological advancements, a unique modality has arisen in fluorescent sensing constructs to effectively sense and monitor this problem. The authentic scientific databases, including Scopus and PubMed, were used to perform the literature survey. For a said purpose, in this paper, a standardized methodology based on inclusion-exclusion criteria was followed to review the literature within the last ten years range to justify the scientific theme of the work and make sure to cover the recent and relevant literature contents.Consejo Nacional de Ciencia y Tecnología (CONACyT) Mexico and Tecnologico de Monterrey, Mexico are thankfully acknowledged for supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M. N. Iqbal (CVU: 735340) and Roberto Parra-Saldívar (CVU: 35753).Peer reviewe

    Characterization of Chemically Activated Pyrolytic Carbon Black Derived from Waste Tires as a Candidate for Nanomaterial Precursor

    No full text
    Pyrolysis is a feasible solution for environmental problems related to the inadequate disposal of waste tires, as it leads to the recovery of pyrolytic products such as carbon black, liquid fuels and gases. The characteristics of pyrolytic carbon black can be enhanced through chemical activation in order to produce the required properties for its application. In the search to make the waste tire pyrolysis process profitable, new applications of the pyrolytic solid products have been explored, such as for the fabrication of energy-storage devices and precursor in the synthesis of nanomaterials. In this study, waste tires powder was chemically activated using acid (H2SO4) and/or alkali (KOH) to recover pyrolytic carbon black with different characteristics. H2SO4 removed surface impurities more thoroughly, improving the carbon black’s surface area, while KOH increased its oxygen content, which improved the carbon black’s stability in water suspension. Pyrolytic carbon black was fully characterized by elemental analysis, inductively coupled plasma–optical emission spectrometry (ICP-OES), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), N2 adsorption/desorption, scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM-EDS), dynamic light scattering (DLS), and ζ potential measurement. In addition, the pyrolytic carbon black was used to explore its feasibility as a precursor for the synthesis of carbon dots; synthesized carbon dots were analyzed preliminarily by SEM and with a fluorescence microplate reader, revealing differences in their morphology and fluorescence intensity. The results presented in this study demonstrate the effect of the activating agent on pyrolytic carbon black from waste tires and provide evidence of the feasibility of using waste tires for the synthesis of nanomaterials such as carbon dots

    Synthesis, Purification, and Characterization of Carbon Dots from Non-Activated and Activated Pyrolytic Carbon Black

    No full text
    In this work, carbon dots were created from activated and non-activated pyrolytic carbon black obtained from waste tires, which were then chemically oxidized with HNO3. The effects caused to the carbon dot properties were analyzed in detail through characterization techniques such as ion chromatography; UV–visible, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy; ζ potential; transmission electron microscopy (TEM); and spectrofluorometry. The presence of functional groups on the surface of all carbon dots was revealed by UV–visible, FTIR, XPS, and Raman spectra. The higher oxidation degrees of carbon dots from activated precursors compared to those from nonactivated precursors resulted in differences in photoluminescence (PL) properties such as bathochromic shift, lower intensity, and excitation-dependent behavior. The results demonstrate that the use of an activating agent in the recovery of pyrolytic carbon black resulted in carbon dots with different PL properties. In addition, a dialysis methodology is proposed to overcome purification obstacles, finding that 360 h were required to obtain pure carbon dots synthesized by a chemical oxidation method
    corecore