24 research outputs found

    Efectos de un nuevo nutracéutico basado en aceite de oliva virgen extra, aceite de algas y extracto de hojas de olivo sobre las alteraciones metabólicas y cardiovasculares asociadas al envejecimiento

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Fisiología. Fecha de Lectura: 23-07-2021Esta tesis tiene embargado el acceso al texto completo hasta el 23-01-2023Este trabajo de investigación ha sido financiado por la beca “Doctorados Industriales 2017” (IND2017/BIO7701) de la Comunidad de Madri

    Postnatal overfeeding during lactation induces endothelial dysfunction and cardiac insulin resistance in adult rats

    Full text link
    Early overnutrition is associated with cardiometabolic alterations in adulthood, likely attributed to reduced insulin sensitivity due to its crucial role in the cardiovascular system. This study aimed to assess the long-term effects of early overnutrition on the development of cardiovascular insulin resistance. An experimental childhood obesity model was established using male Sprague Dawley rats. Rats were organized into litters of 12 pups/mother (L12-Controls) or 3 pups/mother (L3-Overfed) at birth. After weaning, animals from L12 and L3 were housed three per cage and provided ad libitum access to food for 6 months. L3 rats exhibited elevated body weight, along with increased visceral, subcutaneous, and perivascular fat accumulation. However, heart weight at sacrifice was reduced in L3 rats. Furthermore, L3 rats displayed elevated serum levels of glucose, leptin, adiponectin, total lipids, and triglycerides compared to control rats. In the myocardium, overfed rats showed decreased IL-10 mRNA levels and alterations in contractility and heart rate in response to insulin. Similarly, aortic tissue exhibited modified gene expression of TNFα, iNOS, and IL-6. Additionally, L3 aortas exhibited endothelial dysfunction in response to acetylcholine, although insulin-induced relaxation remained unchanged compared to controls. At the molecular level, L3 rats displayed reduced Akt phosphorylation in response to insulin, both in myocardial and aortic tissues, whereas MAPK phosphorylation was elevated solely in the myocardium. Overfeeding during lactation in rats induces endothelial dysfunction and cardiac insulin resistance in adulthood, potentially contributing to the cardiovascular alterations observed in this experimental mode

    Anti-influenza virus activity of the elenolic acid rich olive leaf (Olea europaea L.) extract Isenolic

    Full text link
    Seasonal flu is caused by influenza infection, a virus that spreads easily in human population with periodical epidemic outbreaks. The high mutational rate of influenza viruses leads to the emergence of strains resistant to the current treatments. Due to that, scientific research is focusing on the development of new anti-influenza agents as alternative or complementary treatments. Olive tree (Olea europaea L.) has been a source of ancestral remedies due to its antimicrobial activity. Thus, the aim of this study was to test the anti-influenza activity of a standardized olive leaf extract rich in elenolic acid (EA), Isenolic®, compared with oseltamivir. Isenolic® extract was characterized by High Performance Liquid Chromatography (HPLC)-Mass Spectrometry and its content in EA was determined by HPLC. Cytotoxicity, viral neuraminidase inhibitor activity and cell viability protection against influenza infection of Isenolic® were tested in vitro using sialic acid overexpressing Madin-Darby Canine Kidney cells. Isenolic® formulations showed a 4% and 8% dry basis. Oseltamivir and Isenolic® extracts showed anti-influenza activity. The 8% Isenolic® formulation showed a dose-dependent neuraminidase inhibitor activity higher than the 4% formulation, and preserved cell viability under viral infection. Thus, Isenolic® become a promising natural alternative to existing influenza treatment

    Beneficial effects of an aged black garlic extract in the metabolic and vascular alterations induced by a high fat/sucrose diet in male rats

    Full text link
    Aged black garlic (ABG) is a functional food with antioxidant and anti-inflammatory properties. Recent studies also report its beneficial metabolic effects in a context of obesity or diabetes, although the mechanisms involved are poorly understood. The aim of this work was to analyze the effects of an ABG extract in the vascular and metabolic alterations induced by a high-fat/sucrose diet in rats. For this purpose, male Sprague–Dawley rats were fed either a standard chow (controls; n = 12) or a high-fat/sucrose diet (HFD; n = 24) for 16 weeks. From week 8 on, half of the HFD rats were treated with a commercial ABG extract concentrated in S-allyl cysteine and melanoidins (ABG10+®; 250 mg/kg daily by gavage; 5 mL/kg). ABG10+®-treated rats showed lower mean caloric intake, body weight, triglycerides, low density lipoprotein cholesterol (LDL-c), insulin and leptin serum concentrations and higher high density lipoprotein cholesterol (HDL-c) and adiponectin serum concentrations than non-treated rats. In the hypothalamus, ABG10+® treatment induced an increase in the gene expression of proopiomelanocortin (POMC) and a decrease in leptin receptor (ObR) mRNA levels. No significant changes were found in visceral adipose tissue except for an overexpression of β3-adrenergic receptor (β3-ADR) in ABG-treated rats. In subcutaneous adipose tissue, ABG10+® treatment decreased adipose weight and downregulated the gene expression of PPAR-γ, LPL, ObR and HSL. In brown adipose tissue, an overexpression of InsR, GLUT-4, UCP-1 and β3-ADR in ABG10+®-treated rats was found, whereas PPAR-γ mRNA levels were significantly decreased. Regarding vascular function, ABG10+® treatment attenuated the obesity-induced vasoconstriction in response to potassium chloride both in presence/absence of perivascular adipose tissue (PVAT). On the contrary, aorta segments from ABG-treated rats showed and improved relaxation in response to acetylcholine only when PVAT was present, with this fact possible being related to the decreased gene expression of proinflammatory cytokines in this tissue. In conclusion, ABG10+® administration partially improves the metabolic and vascular alterations induced by a high-fat/high-sucrose diet in rats through modifications in the gene expression of proteins and neuropeptides involved in inflammation, fat metabolism and food intake regulation. Further studies are required to assess the bioavailability of ABG between rats and humans.This study has been funded by Pharmactive Biotech Products S.L

    Overfeeding during lactation in rats is associated with cardiovascular insulin resistance in the short-term

    Full text link
    Childhood obesity is associated with metabolic and cardiovascular comorbidities. The development of these alterations may have its origin in early life stages such as the lactation period through metabolic programming. Insulin resistance is a common complication in obese patients and may be responsible for the cardiovascular alterations associated with this condition. This study analyzed the development of cardiovascular insulin resistance in a rat model of childhood overweight induced by overfeeding during the lactation period. On birth day, litters were divided into twelve (L12) or three pups per mother (L3). Overfed rats showed a lower increase in myocardial contractility in response to insulin perfusion and a reduced insulin-induced vasodilation, suggesting a state of cardiovascular insulin resistance. Vascular insulin resistance was due to decreased activation of phosphoinositide 3-kinase (PI3K)/Akt pathway, whereas cardiac insulin resistance was associated with mitogen-activated protein kinase (MAPK) hyperactivity. Early overfeeding was also associated with a proinflammatory and pro-oxidant state; endothelial dysfunction; decreased release of nitrites and nitrates; and decreased gene expression of insulin receptor (IR), glucose transporter-4 (GLUT-4), and endothelial nitric oxide synthase (eNOS) in response to insulin. In conclusion, overweight induced by lactational overnutrition in rat pups is associated with cardiovascular insulin resistance that could be related to the cardiovascular alterations associated with this conditionThis study has been funded by the grant to Precompetitive Projects of Universidad San Pablo CEU and Banco Santander 2016, and by a grant from the Community of Madrid (CAM) awarded to Daniel González-Hedström (IND2017/BIO7701, Spain

    A mixture of algae and extra virgin olive oils attenuates the cardiometabolic alterations associated with aging in male wistar rats

    Get PDF
    Aging is one of the major risk factors for suffering cardiovascular and metabolic diseases. Due to the increase in life expectancy, there is a strong interest in the search for anti-aging strategies to treat and prevent these aging-induced disorders. Both omega 3 polyunsaturated fatty acids (ω-3 PUFA) and extra virgin olive oil (EVOO) exert numerous metabolic and cardiovascular benefits in the elderly. In addition, EVOO constitutes an interesting ingredient to stabilize ω-3 PUFA and decrease their oxidation process due to its high content in antioxidant compounds. ω-3 PUFA are commonly obtained from fish. However, more ecological and sustainable sources, such as algae oil (AO) can also be used. In this study, we aimed to study the possible beneficial effect of an oil mixture composed by EVOO (75%) and AO (25%) rich in ω-3 PUFA (35% docosahexaenoic acid (DHA) and 20% eicosapentaenoic acid (EPA)) on the cardiometabolic alterations associated with aging. For this purpose; young (three months old) and old (24 months old) male Wistar rats were treated with vehicle or with the oil mixture (2.5 mL/kg) for 21 days. Treatment with the oil mixture prevented the aging-induced increase in the serum levels of saturated fatty acids (SFA) and the aging-induced decrease in the serum concentrations of mono-unsaturated fatty acids (MUFA). Old treated rats showed increased serum concentrations of EPA and DHA and decreased HOMA-IR index and circulating levels of total cholesterol, insulin and IL-6. Treatment with the oil mixture increased the mRNA levels of antioxidant and insulin sensitivity-related enzymes, as well as reduced the gene expression of pro-inflammatory markers in the liver and in cardiac and aortic tissues. In addition, the treatment also prevented the aging-induced endothelial dysfunction and vascular insulin resistance through activation of the PI3K/Akt pathway. Moreover, aortic rings from old rats treated with the oil mixture showed a decreased response to the vasoconstrictor AngII. In conclusion, treatment with a mixture of EVOO and AO improves the lipid profile, insulin sensitivity and vascular function in aged rats and decreases aging-induced inflammation and oxidative stress in the liver, and in the cardiovascular system. Thus, it could be an interesting strategy to deal with cardiometabolic alterations associated with aging.This project was funded by the call “Doctorados Industriales 2017” (IND2017/BIO7701), a grant from Community of Madrid (Spain). This program aims to promote the effective collaboration between Universities and Companies and provides funding for the development of the research project at the University and, to hire a PhD student (Daniel González-Hedström) by the Company (Pharmactive Biotech Products S.L.) over a three-year period. Community of Madrid also funded the contract of María de la Fuente-Fernández through the Youth Employment Program (PEJ-2018-AI/SAL-11315

    Supplementation with a carob (Ceratonia siliqua l.) fruit extract attenuates the cardiometabolic alterations associated with metabolic syndrome in mice

    Full text link
    The incidence of metabolic syndrome (MetS) is increasing worldwide which makes necessary the finding of new strategies to treat and/or prevent it. The aim of this study was to analyze the possible beneficial effects of a carob fruit extract (CSAT+®) on the cardiometabolic alterations associated with MetS in mice. 16-week-old C57BL/6J male mice were fed for 26 weeks either with a standard diet (chow) or with a diet rich in fats and sugars (HFHS), supplemented or not with 4.8% of CSAT+®. CSAT+® supplementation reduced blood glucose, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and circulating levels of total cholesterol, low-density lipoprotein (LDL) cholesterol (LDL-c), insulin, and interleukin-6 (IL-6). In adipose tissue and skeletal muscle, CSAT+® prevented MetS-induced insulin resistance, reduced macrophage infiltration and the expression of pro-inflammatory markers, and up-regulated the mRNA levels of antioxidant markers. Supplementation with CSAT+® prevented MetS-induced hypertension and decreased the vascular response of aortic rings to angiotensin II (AngII). Moreover, treatment with CSAT+® attenuated endothelial dysfunction and increased vascular sensitivity to insulin. In the heart, CSAT+® supplementation reduced cardiomyocyte apoptosis and prevented ischemia-reperfusion-induced decrease in cardiac contractility. The beneficial effects at the cardiovascular level were associated with a lower expression of pro-inflammatory and pro-oxidant markers in aortic and cardiac tissues.This work has been funded by Pharmactive Biotech Products S.L. and by Grants from Community of Madrid awarded to Daniel González-Hedström (IND2017/BIO7701,) and María de la Fuente-Fernández (PEJ-2018-AI/SAL-11315

    Olive Leaf Extract Supplementation to Old Wistar Rats Attenuates Aging-Induced Sarcopenia and Increases Insulin Sensitivity in Adipose Tissue and Skeletal Muscle

    Get PDF
    Aging is associated with increased visceral adiposity and a decrease in the amount of brown adipose tissue and muscle mass, known as sarcopenia, which results in the development of metabolic alterations such as insulin resistance. In this study, we aimed to analyze whether 3-week supplementation with a phenolic-rich olive leaf extract (OLE) to 24 months-old male Wistar rats orally (100 mg/kg) attenuated the aging-induced alterations in body composition and insulin resistance. OLE treatment increased brown adipose tissue and attenuated the aging-induced decrease in protein content and gastrocnemius weight. Treatment with OLE prevented the aging-induced increase in the expression of PPAR-γ in visceral and brown adipose tissues, while it significantly increased the expression of PPAR-α in the gastrocnemius of old rats and reduced various markers related to sarcopenia such as myostatin, HDAC-4, myogenin and MyoD. OLE supplementation increased insulin sensitivity in explants of gastrocnemius and epididymal visceral adipose tissue from aged rats through a greater activation of the PI3K/Akt pathway, probably through the attenuation of inflammation in both tissues. In conclusion, supplementation with OLE prevents the loss of muscle mass associated with aging and exerts anti-inflammatory and insulin-sensitizing effects on adipose tissue and skeletal muscle

    Addition of Olive Leaf Extract to a Mixture of Algae and Extra Virgin Olive Oils Decreases Fatty Acid Oxidation and Synergically Attenuates Age-Induced Hypertension, Sarcopenia and Insulin Resistance in Rats

    Get PDF
    Olive-derived products, such as virgin olive oil (EVOO) and/or olive leaf extracts (OLE), exert anti-inflammatory, insulin-sensitizing and antihypertensive properties and may be useful for stabilizing omega 3 fatty acids (n-3 PUFA) due to their high content in antioxidant compounds. In this study, the addition of OLE 4:0.15 (w/w) to a mixture of algae oil (AO) rich in n-3 PUFA and EVOO (25:75, w/w) prevents peroxides formation after 12 months of storage at 30 °C. Furthermore, the treatment with the oil mixture (2.5 mL/Kg) and OLE (100 mg/Kg) to 24 month old Wistar rats for 21 days improved the lipid profile, increased the HOMA-IR and decreased the serum levels of miRNAs 21 and 146a. Treatment with this new nutraceutical also prevented age-induced insulin resistance in the liver, gastrocnemius and visceral adipose tissue by decreasing the mRNA levels of inflammatory and oxidative stress markers. Oil mixture + OLE also attenuated the age-induced alterations in vascular function and prevented muscle loss by decreasing the expression of sarcopenia-related markers. In conclusion, treatment with a new nutraceutical based on a mixture of EVOO, AO and OLE is a useful strategy for improving the stability of n-3 PUFA in the final product and to attenuate the cardiometabolic and muscular disorders associated with aging

    Beneficial Effects of a Mixture of Algae and Extra Virgin Olive Oils on the Age-Induced Alterations of Rodent Skeletal Muscle: Role of HDAC-4

    No full text
    Aging is associated with a progressive decline in skeletal muscle mass, strength and function (sarcopenia). We have investigated whether a mixture of algae oil (25%) and extra virgin olive oil (75%) could exert beneficial effects on sarcopenia. Young (3 months) and old (24 months) male Wistar rats were treated with vehicle or with the oil mixture (OM) (2.5 mL/kg) for 21 days. Aging decreased gastrocnemius weight, total protein, and myosin heavy chain mRNA. Treatment with the OM prevented these effects. Concomitantly, OM administration decreased the inflammatory state in muscle; it prevented the increase of pro-inflammatory interleukin-6 (IL-6) and the decrease in anti-inflammatory interleukin-10 (IL-10) in aged rats. The OM was not able to prevent aging-induced alterations in either the insulin-like growth factor I/protein kinase B (IGF-I/Akt) pathway or in the increased expression of atrogenes in the gastrocnemius. However, the OM prevented decreased autophagy activity (ratio protein 1A/1B-light chain 3 (LC3b) II/I) induced by aging and increased expression of factors related with muscle senescence such as histone deacetylase 4 (HDAC-4), myogenin, and IGF-I binding protein 5 (IGFBP-5). These data suggest that the beneficial effects of the OM on muscle can be secondary to its anti-inflammatory effect and to the normalization of HDAC-4 and myogenin levels, making this treatment an alternative therapeutic tool for sarcopenia
    corecore