367 research outputs found

    Temperature and strain rate dependences on hardening and softening behaviours in semi-crystalline polymers: Application to PEEK

    Get PDF
    Semi-crystalline polymers often present a complex non-linear behaviour that combines thermo-viscoelastic and thermo-viscoplastic contributions associated to different deformation mechanisms. During the initial deformation stages, the process is influenced by the rupture and reorientation of crystalline phases while, during the final deformation stages, the process is mainly governed by the mobility and orientation of the amorphous molecular chains. Moreover, the level of reorientation of crystalline and amorphous phases is strongly affected by variables such as temperature and strain rate. This work focusses on the role of such mechanisms in the mechanical behaviour of polyether-ether-ketone (PEEK) within its different thermal-behaviour regions: initial glassy region, glass transition and final rubbery region. To this end, samples of PEEK are subjected to large deformations under uniaxial tension at temperatures from 20 to 240 °C, and strain rates from 0.0001 to 0.1s^-1 (covering both isothermal and adiabatic conditions). In addition, a constitutive model is proposed to complementarily explain the experimental observations by means of entropic strain hardening due to reorientation of polymer chains influenced by thermo-viscoelastic effects, as well as thermo-viscoplastic behaviours defining the material yielding by means of crystallites deformation and breaking. These results provide new insights into the deformation mechanisms of semi-crystalline polymers below and above glass transition, which are significantly relevant for thermoforming processes of biomedical prosthesis

    A new constitutive model for polymeric matrices: Application to biomedical materials

    Get PDF
    Semi crystalline polymeric composites are increasingly used as bearing material in the biomedical sector, mainly because of their specific mechanical properties and the new advances in 3D printing technologies that allows for customised devices. Among these applications, total or partial prostheses for surgical purposes must consider the influence of temperature and loading rate. This paper proposes a new constitutive model for semi-crystalline polymers, commonly used as matrix material in a wide variety of biomedical composites, that enables reliable predictions under a wide range of loading conditions. Most of the recent models present limitations to predict the non-linear behaviour of the polymer when it is exposed to large deformations at high strain rates. The proposed model takes into account characteristic behaviours of injected and 3D printed thermoplastic polymers such as material hardening due to strain rate sensitivity, thermal softening, thermal expansion and combines viscoelastic and viscoplastic responses. These viscous-behaviours are relevant for biomedical applications where temperature evolution is expected during the deformation process due to heat generation induced by inelastic dissipation, being essential the thermo-mechanical coupling consideration. The constitutive model is formulated for finite deformations within a thermodynamically consistent framework. Additionally, the model is implemented in a finite element code and its parameters are identified for two biomedical polymers: ultra-high-molecular-weight polyethylene (UHMWPE) and high density polyethylene (HDPE). Finally, the influence of viscous behaviours on dynamic deformation of semi-crystalline polymeric matrices is analysed

    A continuum constitutive model for FDM 3D printed thermoplastics

    Get PDF
    Fused deposition modelling (FDM) is the most common additive manufacturing technology used for thermoplastic components. This layers-based manufacturing process results into direct links between printing parameters and the polymer mesostructure by means of porosity and structural anisotropy. These dependencies along with other features of thermoplastic polymers (i.e., nonlinearities, viscous and thermal responses) makes its constitutive modelling very challenging. This work distances from studies that model the 3D printing process. Instead, we aim at complementing such approaches with a continuum model to describe the macroscopic behaviour of FDM thermoplastics while preserving links with printing parameters. Prior to the modelling conceptualisation, experimental characterisation tests are conducted on ABS specimens to evaluate the influence of printing parameters on the macroscopic mechanical response. The physical fundamentals behind the deformation and failure mechanisms are identified and motivate the new constitutive model. This model is formulated for finite deformations within a thermodynamically consistent framework. The model accounts for: nonlinear response; anisotropic hyperelasticity related to a transversely isotropic distribution of porous; strain rate dependency; macroscopic stiffness dependent on 3D printing processing. Finally, the model is numerically implemented and calibrated for ABS with original experiments, demonstrating its suitability.The authors acknowledge support from Ministerio de Ciencia, Innovación y Universidades, Spain, Agencia Estatal de Investigación y Fondo Europeo de Desarrollo Regional, Spain, como entidades financiadoras (RTI2018-094318-B-I00). D.G.-G., S.G.-H. and A.A. acknowledge support from Programa de Apoyo a la Realización de Proyectos Interdisciplinares de I+D para Jóvenes Investigadores de la Universidad Carlos III de Madrid (BIOMASKIN-CM-UC3M). D.G.-G. acknowledges support from the Talent Attraction grant (CM 2018 - 2018-T2/IND- 9992) from the Comunidad de Madrid, Spain

    Multi-impact mechanical behaviour of short fibre reinforced composites

    Get PDF
    High velocity transverse impact on reinforced composites is a matter of interest in the automotive, aeronautical and biomedical sectors. Most existing studies have addressed this problem by single isolated impacts; however, this work deals with the distinction between single, sequential and simultaneous impacts on composite structures. This paper proposes an experimental methodology to study the mechanical behaviour of materials under single and multi-impact loadings. The overall objective is to investigate the mechanical response of short carbon fibre reinforced PEEK when is subjected to single and multiple high velocity impacts. Experimental tests are conducted covering impact velocities from 90 m/s to 470 m/s. Energy absorption, damage extension and failure mechanisms are compared to assess additive and cumulative effects in high velocity impact scenarios. Experimental results show that the specific deformation and fracture mechanisms observed during multi-hitting events change with impact velocity. Compared to the behaviour of unreinforced thermoplastics, short fibre reinforced composites present significant limitations at velocities close to the ballistic limit, but multi-hit capability is observed at high impact velocity when the damage is mainly local. As key conclusion, the ballistic limit obtained in single impact test cannot be extrapolated to sequential and simultaneous tests. Multi-impact tests, especially close to the ballistic limit, are necessary to guarantee the structural integrity of composite structures in realistic impact scenarios.The researchers are indebted to Ministerio de Economía y Competitividad de España (Project DPI2014-57989-P) and Vicerrectorado de Política Científica UC3M (Project 2013-00219-002) for financial support

    A hyperelastic-thermoviscoplastic constitutive model for semi-crystalline polymers: application to PEEK under dynamic loading conditions

    Get PDF
    In this work, a hyperelastic-thermoviscoplastic constitutive model including thermomechanical coupling is presented to predict the mechanical behavior of semi-crystalline polymers. The constitutive model is based on the original approach developed by Polanco-Loria and coauthors (2010) and it accounts for: material hardening due to strain rate sensitivity, temperature evolution during the deformation process due to heat generation induced by plastic dissipation, thermal softening and thermal expansion of the material. The parameters of the constitutive model have been identified for polyether-ether-ketone (PEEK) from experimental data published by Rae and coauthors (2007). In order to analyze the predictive capacity of the model under dynamic conditions, the constitutive model has been implemented in a FE code within a large deformation framework to study two different problems: low velocity impact test on PEEK thin plates and dynamic necking on PEEK slender bar.The researchers are indebted to the Ministerio de Economía y Competitividad de España (Project DPI2014-57989-P) for the financial support which permitted to conduct part of this wor

    Mechanical impact behavior of polyether-ether-ketone (PEEK)

    Get PDF
    This paper deals with the mechanical behavior of polyether ether ketone (PEEK) under impact loading. PEEK polymers are the great interested in the field of medical implants due to their biocompatibility, weight reduction, radiology advantage and 3D printing properties. Implant applications can involve impact loading during useful life and medical installation, such as hip systems, bone anchors and cranial prostheses. In this work, the mechanical impact behavior of PEEK is compared with Ti6AI4V titanium alloy commonly used for medical applications. In order to calculate the kinetic energy absorption in the impact process, perforation tests have been conducted on plates of both materials using steel spheres of 1.3 g mass as rigid penetrators. The perforation test covered impact kinetic energies from 21 J to 131 J, the equivalent range observed in a fall, an accidental impact or a bike accident. At all impact energies, the ductile process of PEEK plates was noted and no evidence of brittle failure was observed. Numerical modeling that includes rate dependent material is presented and validated with experimental data.The researchers of the University Carlos Ill of Madrid are indebted to Ministerio de Ciencia e lnnovación de España (Project DPl/2011 24068) for the financial support received which allowed conducting part of this work

    Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites

    Get PDF
    This paper describes the results of an experimental and numerical investigation of the impact behavior of short carbon fiber reinforced polyether-ether-ketone (SCFR PEEK) composites. The biocompatibility of PEEK and its short fiber composites, their rapid processing by injection molding and suitability for modern imaging have supported technological advances in prosthetic implants used in orthopedic medicine. Surgical implants, including hip and cranial implants, can experience clinically significant impact loading during medical installation and useful life. While the incorporation of short fibers in a thermoplastic matrix can produce significant improvements in stiffness and strength, it can also cause a marked reduction in ductility, making study of their energy absorption capability essential. In this work, the mechanical impact behavior of PEEK composites reinforced with polyacrylonitrile (PAN) short carbon fibers 30% in weight is compared with unfilled PEEK. The perforation tests conducted covered an impact kinetic energy range from 21 J to 131 J, equivalent to the range observed in a fall, the leading cause of hip fractures. Energy absorption capability, damage extension and failure mechanism have been quantified and reported. A numerical modeling that includes homogenization of elastic material and anisotropic damage is presented and validated with experimental data. At all impact energies, SCFR PEEK composites showed a brittle failure and their absorption energy capability decreases drastically in comparison with unfilled PEEK. (C) 2015 Elsevier Ltd. All rights reserved.The researchers of the University Carlos III of Madrid are indebted to the Ministerio de Ciencia e Innovación de España (Project DPI/2011-24068) and to the Ministerio de Economía y Competitividad de España (Project DPI/2014-57989-P) for financial support towards part of this work. The researchers are indebted to LATI Company for PEEK material supplie

    Low temperature effect on impact energy absorption capability of PEEK composites

    Get PDF
    This paper describes the results of an experimental investigation which analyses the impact behavior at low temperature of polyether ether ketone (PEEK) and its short carbon fiber reinforced composite (SCFR PEEK). These polymer materials are widely employed in aeronautical applications subjected to impact loadings in which the energy absorption capability is an aspect that should be taken into account. The energy absorption capability can drastically decrease if temperatures near to the ductile-to-brittle transition temperature of polymeric matrix are reached. In this work, a set of perforation tests has been conducted covering a testing temperature range from -75 degrees C to +25 degrees C and an impact kinetic energy range from 11 J to 175 1 including typical values considered in impact loadings at aeronautical flight speeds. Energy absorption capability, damage extension and failure mechanisms have been quantified and reported. At low temperatures, a ductile-to-brittle transition was found in PEEK unfilled resulting in a suddenly change of its mechanical impact behavior affecting the energy absorption capability. In case of SCFR PEEK composite, a brittle behavior was observed for the whole temperature range considered and its energy absorption capability decreases drastically at lower temperatures. The brittleness of PEEK and SCFR PEEK at low temperature will limit the application of this composite in aeronautical structures exposed to impact.The researchers of the University Carlos III of Madrid are indebted to the Ministerio de Ciencia e Innovación de España (Project DPI/2011-24068) and to the Ministerio de Economía y Competitividad de España (Project DPI/2014-57989-P) for financial support towards part of this work

    Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties

    Get PDF
    Additive manufacturing technologies provide new opportunities for the manufacturing of components with customisable geometries and mechanical properties. In particular, fused deposition modelling (FDM) allows for customisable mechanical properties by controlling the void density and filament orientation. In this work, a methodology is provided for the prediction of the mechanical properties and mesostructure of FDM polymers. To this end, we propose a computational framework for the simulation of the printing process taking as input data specific manufacturing parameters and filament properties. A new two-stage thermal and sintering model is developed to predict the bond formation process between filaments. The model predictions are validated against original experimental data for acrylonitrile butadiene styrene (ABS) components manufactured by FDM. A parametric study is finally presented to interpret the effects of different manufacturing parameters on the mechanical performance of ABS specimens. Overall, the proposed framework offers new avenues for the design of 3D printed polymeric components with custom properties, directly in terms of manufacturing settings.D. Garcia-Gonzalez acknowledges support from the Talent Attraction grant (CM 2018 - 2018-T2/IND-9992) from the Comunidad de Madrid. S. Garzon-Hernandez, D. Garcia-Gonzalez and A. Arias acknowledge support from Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación y Fondo Europeo de Desarrollo Regional,comoentidades financiadoras (RTI2018-094318- B-I00)
    corecore