31,227 research outputs found

    Shot-noise anomalies in nondegenerate elastic diffusive conductors

    Full text link
    We present a theoretical investigation of shot-noise properties in nondegenerate elastic diffusive conductors. Both Monte Carlo simulations and analytical approaches are used. Two new phenomena are found: (i) the display of enhanced shot noise for given energy dependences of the scattering time, and (ii) the recovery of full shot noise for asymptotic high applied bias. The first phenomenon is associated with the onset of negative differential conductivity in energy space that drives the system towards a dynamical electrical instability in excellent agreement with analytical predictions. The enhancement is found to be strongly amplified when the dimensionality in momentum space is lowered from 3 to 2 dimensions. The second phenomenon is due to the suppression of the effects of long range Coulomb correlations that takes place when the transit time becomes the shortest time scale in the system, and is common to both elastic and inelastic nondegenerate diffusive conductors. These phenomena shed new light in the understanding of the anomalous behavior of shot noise in mesoscopic conductors, which is a signature of correlations among different current pulses.Comment: 9 pages, 6 figures. Final version to appear in Phys. Rev.

    Noise suppression due to long-range Coulomb interaction: Crossover between diffusive and ballistic transport regimes

    Full text link
    We present a Monte Carlo analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor samples under a crossover between diffusive and ballistic transport regimes. By varying the mean time between collisions we find that the strong suppression observed under the ballistic regime persists under quasi-ballistic conditions, before being washed out when a complete diffusive regime is reached.Comment: RevTex, 3 pages, 4 figures, minor correction

    A Novel Multi-parameter Family of Quantum Systems with Partially Broken N-fold Supersymmetry

    Get PDF
    We develop a systematic algorithm for constructing an N-fold supersymmetric system from a given vector space invariant under one of the supercharges. Applying this algorithm to spaces of monomials, we construct a new multi-parameter family of N-fold supersymmetric models, which shall be referred to as "type C". We investigate various aspects of these type C models in detail. It turns out that in certain cases these systems exhibit a novel phenomenon, namely, partial breaking of N-fold supersymmetry.Comment: RevTeX 4, 28 pages, no figure

    Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire

    Get PDF
    We study the metal-insulator transition in individual self-assembled quantum wires and report optical evidences of metallic liquid condensation at low temperatures. Firstly, we observe that the temperature and power dependence of the single nanowire photoluminescence follow the evolution expected for an electron-hole liquid in one dimension. Secondly, we find novel spectral features that suggest that in this situation the expanding liquid condensate compresses the exciton gas in real space. Finally, we estimate the critical density and critical temperature of the phase transition diagram at nc1×105n_c\sim1\times10^5 cm1^{-1} and Tc35T_c\sim35 K, respectively.Comment: 4 pages, 5 figure

    Anomaly-free constraints in neutrino seesaw models

    Full text link
    The implementation of seesaw mechanisms to give mass to neutrinos in the presence of an anomaly-free U(1)_X gauge symmetry is discussed in the context of minimal extensions of the standard model. It is shown that type-I and type-III seesaw mechanisms cannot be simultaneously implemented with an anomaly-free local U(1)_X, unless the symmetry is a replica of the well-known hypercharge. For combined type-I/II or type-III/II seesaw models it is always possible to find nontrivial anomaly-free charge assignments, which are however tightly constrained, if the new neutral gauge boson is kinematically accessible at LHC. The discovery of the latter and the measurement of its decays into third-generation quarks, as well as its mixing with the standard Z boson, would allow one to discriminate among different seesaw realizations.Comment: 5 pages, 3 figures; final version to appear in Phys. Rev.

    Constraints on leptogenesis from a symmetry viewpoint

    Get PDF
    It is shown that type I seesaw models based on the standard model Lagrangian extended with three heavy Majorana right-handed fields do not have leptogenesis in leading order, if the symmetries of mass matrices are also the residual symmetry of the Lagrangian. In particular, flavor models that lead to a mass-independent leptonic mixing have a vanishing leptogenesis CP asymmetry. Based on symmetry arguments, we prove that in these models the Dirac-neutrino Yukawa coupling combinations relevant for leptogenesis are diagonal in the physical basis where the charged leptons and heavy Majorana neutrinos are diagonal.Comment: 5 pages; a few comments added; final version to appear in Phys. Rev.

    Effect of long-range Coulomb interaction on shot-noise suppression in ballistic transport

    Get PDF
    We present a microscopic analysis of shot-noise suppression due to long-range Coulomb interaction in semiconductor devices under ballistic transport conditions. An ensemble Monte Carlo simulator self-consistently coupled with a Poisson solver is used for the calculations. A wide range of injection-rate densities leading to different degrees of suppression is investigated. A sharp tendency of noise suppression at increasing injection densities is found to scale with a dimensionless Debye length related to the importance of space-charge effects in the structure.Comment: RevTex, 4 pages, 4 figures, minor correction
    corecore