18 research outputs found

    Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration.

    Get PDF
    BACKGROUND: Adaptation to chronic ethanol (EtOH) treatment of rats results in a changed functional state of the liver and greatly inhibits its regenerative ability, which may contribute to the progression of alcoholic liver disease. METHODS: In this study, we investigated the effect of chronic EtOH intake on hepatic microRNA (miRNA) expression in male Sprague-Dawley rats during the initial 24 hours of liver regeneration following 70% partial hepatectomy (PHx) using miRNA microarrays. miRNA expression during adaptation to EtOH was investigated using RT-qPCR. Nuclear factor kappa B (NFκB) binding at target miRNA promoters was investigated with chromatin immunoprecipitation. RESULTS: Unsupervised clustering of miRNA expression profiles suggested that miRNA expression was more affected by chronic EtOH feeding than by the acute challenge of liver regeneration after PHx. Several miRNAs that were significantly altered by chronic EtOH feeding, including miR-34a, miR-103, miR-107, and miR-122 have been reported to play a role in regulating hepatic metabolism and the onset of these miRNA changes occurred gradually during the time course of EtOH feeding. Chronic EtOH feeding also altered the dynamic miRNA profile during liver regeneration. Promoter analysis predicted a role for NFκB in the immediate-early miRNA response to PHx. NFκB binding at target miRNA promoters in the chronic EtOH-fed group was significantly altered and these changes directly correlated with the observed expression dynamics of the target miRNA. CONCLUSIONS: Chronic EtOH consumption alters the hepatic miRNA expression profile such that the response of the metabolism-associated miRNAs occurs during long-term adaptation to EtOH rather than as an acute transient response to EtOH metabolism. Additionally, the dynamic miRNA program during liver regeneration in response to PHx is altered in the chronically EtOH-fed liver and these differences reflect, in part, differences in miRNA expression between the EtOH-adapted and control livers at the baseline state prior to PHx

    Transcriptional regulatory network analysis during epithelial-mesenchymal transformation of retinal pigment epithelium

    Get PDF
    PURPOSE: Phenotypic transformation of retinal pigment epithelial (RPE) cells contributes to the onset and progression of ocular proliferative disorders such as proliferative vitreoretinopathy (PVR). The formation of epiretinal membranes in PVR may involve an epithelial-mesenchymal transformation (EMT) of RPE cells as part of an aberrant wound healing response. While the underlying mechanism remains unclear, this likely involves changes in RPE cell gene expression under the control of specific transcription factors (TFs). Thus, the purpose of the present study was to identify TFs that may play a role in this process. METHODS: Regulatory regions of genes that are differentially regulated during phenotypic transformation of ARPE-19 cells, a human RPE cell line, were subjected to computational analysis using the promoter analysis and interaction network toolset (PAINT). The PAINT analysis was used to identify transcription response elements (TREs) statistically overrepresented in the promoter and first intron regions of two reciprocally regulated RPE gene clusters, across four species including the human genome. These TREs were then used to construct transcriptional regulatory network models of the two RPE gene clusters. The validity of these models was then tested using RT-PCR to detect differential expression of the corresponding TF mRNAs during RPE differentiation in both undifferentiated and differentiated ARPE-19 and primary chicken RPE cell cultures. RESULTS: The computational analysis resulted in the successful identification of specific transcription response elements (TREs) and their cognate TFs that are candidates for serving as nodes in a transcriptional regulatory network regulating EMT in RPE cells. The models predicted TFs whose differential expression during RPE EMT was successfully verified by reverse transcriptase polymerase chain reaction (RT-PCR) analysis, including Oct-1, hepatocyte nuclear factor 1 (HNF-1), similar to mothers against decapentaplegic 3 (SMAD3), transcription factor E (TFE), core binding factor, erythroid transcription factor-1 (GATA-1), interferon regulatory factor-1 (IRF), natural killer homeobox 3A (NKX3A), Sterol regulatory element binding protein-1 (SREBP-1), and lymphocyte enhancer factor-1 (LEF-1). CONCLUSIONS: These studies successfully applied computational modeling and biochemical verification to identify biologically relevant transcription factors that are likely to regulate RPE cell phenotype and pathological changes in RPE in response to diseases or trauma. These TFs may provide potential therapeutic targets for the prevention and treatment of ocular proliferative disorders such as PVR

    Coordinated dynamic gene expression changes in the central nucleus of the amygdala during alcohol withdrawal.

    Get PDF
    BACKGROUND: Chronic alcohol use causes widespread changes in the cellular biology of the amygdala\u27s central nucleus (CeA), a GABAergic center that integrates autonomic physiology with the emotional aspects of motivation and learning. While alcohol-induced neurochemical changes play a role in dependence and drinking behavior, little is known about the CeA\u27s dynamic changes during withdrawal, a period of emotional and physiologic disturbance. METHODS: We used a qRT-PCR platform to measure 139 transcripts in 92 rat CeA samples from control (N = 33), chronically alcohol exposed (N = 26), and withdrawn rats (t = 4, 8, 18, 32, and 48 hours; N = 5, 10, 7, 6, 5). This focused transcript set allowed us to identify significant dynamic expression patterns during the first 48 hours of withdrawal and propose potential regulatory mechanisms. RESULTS: Chronic alcohol exposure causes a limited number of small magnitude expression changes. In contrast, withdrawal results in a greater number of large changes within 4 hours of removal of the alcohol diet. Sixty-five of the 139 measured transcripts (47%) showed differential regulation during withdrawal. Over the 48-hour period, dynamic changes in the expression of γ-aminobutyric acid type A (GABA(A) ), ionotropic glutamate and neuropeptide system-related G-protein-coupled receptor subunits, and the Ras/Raf signaling pathway were seen as well as downstream transcription factors (TFs) and epigenetic regulators. Four temporally correlated gene clusters were identified with shared functional roles including NMDA receptors, MAPKKK and chemokine signaling cascades, and mediators of long-term potentiation, among others. Cluster promoter regions shared overrepresented binding sites for multiple TFs including Cebp, Usf-1, Smad3, Ap-2, and c-Ets, suggesting a potential regulatory role. CONCLUSIONS: During alcohol withdrawal, the CeA experiences rapid changes in mRNA expression of these functionally related transcripts that were not predicted by measurement during chronic exposure. This study provides new insight into dynamic expression changes during alcohol withdrawal and suggests novel regulatory relationships that potentially impact the aspects of emotional modulation

    Temporal changes in innate immune signals in a rat model of alcohol withdrawal in emotional and cardiorespiratory homeostatic nuclei.

    Get PDF
    BACKGROUND: Chronic alcohol use changes the brain\u27s inflammatory state. However, there is little work examining the progression of the cytokine response during alcohol withdrawal, a period of profound autonomic and emotional upset. This study examines the inflammatory response in the central nucleus of the amygdala (CeA) and dorsal vagal complex (DVC), brain regions neuroanatomically associated with affective and cardiorespiratory regulation in an in vivo rat model of withdrawal following a single chronic exposure. METHODS: For qRT-PCR studies, we measured the expression of TNF-α, NOS-2, Ccl2 (MCP-1), MHC II invariant chain CD74, and the TNF receptor Tnfrsf1a in CeA and DVC samples from adult male rats exposed to a liquid alcohol diet for thirty-five days and in similarly treated animals at four hours and forty-eight hours following alcohol withdrawal. ANOVA was used to identify statistically significant treatment effects. Immunohistochemistry (IHC) and confocal microscopy were performed in a second set of animals during chronic alcohol exposure and subsequent 48-hour withdrawal. RESULTS: Following a chronic alcohol exposure, withdrawal resulted in a statistically significant increase in the expression of mRNAs specific for innate immune markers Ccl2, TNF-α, NOS-2, Tnfrsf1a, and CD74. This response was present in both the CeA and DVC and most prominent at 48 hours. Confocal IHC of samples taken 48 hours into withdrawal demonstrate the presence of TNF-α staining surrounding cells expressing the neural marker NeuN and endothelial cells colabeled with ICAM-1 (CD54) and RECA-1, markers associated with an inflammatory response. Again, findings were consistent in both brain regions. CONCLUSIONS: This study demonstrates the rapid induction of Ccl2, TNF-α, NOS-2, Tnfrsf1a and CD74 expression during alcohol withdrawal in both the CeA and DVC. IHC dual labeling showed an increase in TNF-α surrounding neurons and ICAM-1 on vascular endothelial cells 48 hours into withdrawal, confirming the inflammatory response at the protein level. These findings suggest that an abrupt cessation of alcohol intake leads to an acute central nervous system (CNS) inflammatory response in these regions that regulate autonomic and emotional state

    Rapid temporal changes in the expression of a set of neuromodulatory genes during alcohol withdrawal in the dorsal vagal complex: molecular evidence of homeostatic disturbance.

    Get PDF
    BACKGROUND: Chronic alcohol exposure produces neuroadaptation, which increases the risk of cellular excitotoxicity and autonomic dysfunction during withdrawal. The temporal progression and regulation of the gene expression that contributes to this physiologic and behavioral phenotype is poorly understood early in the withdrawal period. Further, it is unexplored in the dorsal vagal complex (DVC), a brainstem autonomic regulatory structure. METHODS: We use a quantitative polymerase chain reaction platform to precisely and simultaneously measure the expression of 145 neuromodulatory genes in more than 100 rat DVC samples from control, chronically alcohol-exposed, and withdrawn rats. To gain insight into the dynamic progression and regulation of withdrawal, we focus on the expression of a subset of functionally relevant genes during the first 48 hours, when behavioral symptoms are most severe. RESULTS: In the DVC, expression of this gene subset is essentially normal in chronically alcohol-exposed rats. However, withdrawal results in rapid, large-magnitude expression changes in this group. We observed differential regulation in 86 of the 145 genes measured (59%), some as early as 4 hours into withdrawal. Time series measurements (4, 8, 18, 32, and 48 hours after alcohol removal) revealed dynamic expression responses in immediate early genes, γ-aminobutyric acid type A, ionotropic glutamate, and G-protein coupled receptors and the Ras/Raf signaling pathway. Together, these changes elucidate a complex, temporally coordinated response that involves correlated expression of many functionally related groups. In particular, the expression patterns of Gabra1, Grin2a, Grin3a, and Grik3 were tightly correlated. These receptor subunits share overrepresented transcription factor binding sites for Pax-8 and other transcription factors, suggesting a common regulatory mechanism and a role for these transcription factors in the regulation of neurotransmission within the first 48 hours of alcohol withdrawal. CONCLUSIONS: Expression in this gene set is essentially normal in the alcohol-adapted DVC, but withdrawal results in immediate, large-magnitude, and dynamic changes. These data support both increased research focus on the biological ramifications of alcohol withdrawal and enable novel insights into the dynamic withdrawal expression response in this understudied homeostatic control center

    Integrative Gene Regulatory Network Analysis Reveals Light-Induced Regional Gene Expression Phase Shift Programs in the Mouse Suprachiasmatic Nucleus

    Get PDF
    We use the multigenic pattern of gene expression across suprachiasmatic nuclei (SCN) regions and time to understand the dynamics within the SCN in response to a circadian phase-resetting light pulse. Global gene expression studies of the SCN indicate that circadian functions like phase resetting are complex multigenic processes. While the molecular dynamics of phase resetting are not well understood, it is clear they involve a “functional gene expression program”, e.g., the coordinated behavior of functionally related genes in space and time. In the present study we selected a set of 89 of these functionally related genes in order to further understand this multigenic program. By use of high-throughput qPCR we studied 52 small samples taken by anatomically precise laser capture from within the core and shell SCN regions, and taken at time points with and without phase resetting light exposure. The results show striking regional differences in light response to be present in the mouse SCN. By using network-based analyses, we are able to establish a highly specific multigenic correlation between genes expressed in response to light at night and genes normally activated during the day. The light pulse triggers a complex and highly coordinated network of gene regulation. The largest differences marking neuroanatomical location are in transmitter receptors, and the largest time-dependent differences occur in clock-related genes. Nighttime phase resetting appears to recruit transcriptional regulatory processes normally active in the day. This program, or mechanism, causes the pattern of core region gene expression to transiently shift to become more like that of the shell region

    pp32 (ANP32A) Expression Inhibits Pancreatic Cancer Cell Growth and Induces Gemcitabine Resistance by Disrupting HuR Binding to mRNAs

    Get PDF
    The expression of protein phosphatase 32 (PP32, ANP32A) is low in poorly differentiated pancreatic cancers and is linked to the levels of HuR (ELAV1), a predictive marker for gemcitabine response. In pancreatic cancer cells, exogenous overexpression of pp32 inhibited cell growth, supporting its long-recognized role as a tumor suppressor in pancreatic cancer. In chemotherapeutic sensitivity screening assays, cells overexpressing pp32 were selectively resistant to the nucleoside analogs gemcitabine and cytarabine (ARA-C), but were sensitized to 5-fluorouracil; conversely, silencing pp32 in pancreatic cancer cells enhanced gemcitabine sensitivity. The cytoplasmic levels of pp32 increased after cancer cells are treated with certain stressors, including gemcitabine. pp32 overexpression reduced the association of HuR with the mRNA encoding the gemcitabine-metabolizing enzyme deoxycytidine kinase (dCK), causing a significant reduction in dCK protein levels. Similarly, ectopic pp32 expression caused a reduction in HuR binding of mRNAs encoding tumor-promoting proteins (e.g., VEGF and HuR), while silencing pp32 dramatically enhanced the binding of these mRNA targets. Low pp32 nuclear expression correlated with high-grade tumors and the presence of lymph node metastasis, as compared to patients' tumors with high nuclear pp32 expression. Although pp32 expression levels did not enhance the predictive power of cytoplasmic HuR status, nuclear pp32 levels and cytoplasmic HuR levels associated significantly in patient samples. Thus, we provide novel evidence that the tumor suppressor function of pp32 can be attributed to its ability to disrupt HuR binding to target mRNAs encoding key proteins for cancer cell survival and drug efficacy
    corecore