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Rapid temporal changes in the expression of a set of 
neuromodulatory genes during alcohol withdrawal in the dorsal 
vagal complex: molecular evidence of homeostatic disturbance
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1Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of 
Pathology, Anatomy and Cell Biology, Thomas Jefferson University Philadelphia, PA 19107, 
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2Department of Chemical Engineering, Rowan University, Glassboro, NJ, 08028, USA.

3Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA.
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Institute for Computational Biomedicine; and Cancer Center, Weill Medical College of Cornell 
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Abstract

BACKGROUND—Chronic alcohol exposure produces neuroadaptation, which increases the risk 

of cellular excitotoxicity and autonomic dysfunction during withdrawal. The temporal progression 

and regulation of the gene expression that contributes to this physiologic and behavioral 

phenotype is poorly understood early in the withdrawal period. Further, it is unexplored in the 

dorsal vagal complex (DVC), a brainstem autonomic regulatory structure .

METHODS—We use a qPCR platform to precisely and simultaneously measure the expression of 

145 neuromodulatory genes in more than 100 rat DVC samples from control, chronically alcohol 

exposed, and withdrawn rats. To gain insight into the dynamic progression and regulation of 

withdrawal, we focus on the expression of a subset of functionally relevant genes during the first 

48 hours, when behavioral symptoms are most severe.

RESULTS—In the DVC, expression of this gene subset is essentially normal in chronically 

alcohol exposed rats. However, withdrawal results in rapid, large magnitude expression changes in 

this group. We observed differential regulation in 86 of the 145 genes measured (59%), some as 

early as 4 hours into withdrawal. Time series measurements (4, 8, 18, 32 and 48 hours after 

alcohol removal) revealed dynamic expression responses in immediate early genes, γ-

aminobutyric acid type A, ionotropic glutamate, and G-protein coupled receptors and the Ras/Raf 
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signaling pathway. Together, these changes elucidate a complex, temporally coordinated response 

that involves correlated expression of many functionally related groups. In particular, the 

expression patterns of Gabra1, Grin2a, Grin3a and Grik3 were tightly correlated. These receptor 

subunits share over-represented transcription factor binding sites for Pax-8 and other transcription 

factors, suggesting a common regulatory mechanism and a role for these transcription factors in 

the regulation of neurotransmission within the first 48h of alcohol withdrawal.

CONCLUSIONS—Expression in this gene set is essentially normal in the alcohol-adapted DVC, 

but withdrawal results in immediate, large magnitude, dynamic changes. These data support both 

increased research focus on the biological ramifications of alcohol withdrawal and enable novel 

insights into the dynamic withdrawal expression response in this understudied homeostatic control 

center.

Keywords

alcohol withdrawal; gene expression; time series; vagus; gene regulatory network

Introduction

Alcohol is a CNS depressant that alters central nervous system function broadly. If 

consumed chronically, a neuroadapted state of dependence can emerge altering homeostasis. 

In dependence, individuals develop compulsive drinking behavior where, rather than 

providing positive reinforcement, continued alcohol intake limits the individual’s experience 

of negative emotional and physiologic states associated with abstinence (Koob 2011). Such 

negative reinforcement is thought to result from long term changes in neurotransmitter 

signaling systems, which at least in part, involve changes in gene expression (Zhou et al. 

2011). The gene expression changes that occur following the sudden removal of alcohol 

from the cellular environment are equally dramatic (Hashimoto et al. 2011) and precipitate a 

potentially life threatening withdrawal syndrome characterized by agitation, delirium, 

seizures, and autonomic instability (Eyer et al. 2011). In order to better understand alcohol 

dependence and withdrawal, here we study temporal gene expression changes in a subset of 

functionally relevant transcripts within the dorsal vagal homeostatic center during the first 

48h following alcohol removal.

Although it is clear that alcohol’s effects are brain region specific, little is known of 

withdrawal’s effects on the emotional-visceral axis, a homeostatic circuit relaying afferent 

information from visceral organs via the vagus to the brainstem, limbic system, and 

prefrontal cortex (Schwaber et al. 1982). We have previously demonstrated in rats that 

chronic alcohol exposure causes gene expression changes in the dorsal vagal complex 

(DVC), an integrative region in this axis (Covarrubias and Khan et al. 2005). Others have 

demonstrated the regional induction of immediate early gene (IEG) activity following acute 

exposure (Vilpoux et al. 2009). Here, we expand upon these findings by focusing on the 

temporal expression changes that occur when withdrawal-induced physiologic and 

behavioral symptoms are most severe. This time frame corresponds to our own observations 

of rats’ abnormal activity and feeding patterns, as well to those reported by others (Morris et 

al. 2010). We hypothesize that this approach will offer insight into how alcohol withdrawal-

induced autonomic instability correlates with changes in gene expression.
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Previous focused and global expression studies of the effects of chronic alcohol exposure 

and withdrawal have implicated several interacting neurotransmitter systems. Initially, 

alcohol inhibits glutamate excitation (Roberto et al. 2006a), enhances γ-aminobutyric acid 

(GABA) triggered chloride flux (Breese et al. 2006) and alters opioid (Mendez, Morales-

Mulia 2008), dopaminegic and serotonergic signaling (Silberman et al. 2009). These 

signaling changes influence gene expression necessary for adaptation during prolonged use. 

This altered gene expression is detrimental during withdrawal. At the molecular level, 

abrupt alcohol cessation triggers pathological levels of excitation, with high levels of 

calcium flux and MAPK signaling (Silberman et al. 2009, Obara et al. 2009, Prendergast et 

al. 2004). Despite these profound changes in signaling early in withdrawal, there is a relative 

absence of information on the early coordination of gene expression.

Several targeted studies have highlighted the importance of glutamatergic (Roberto et al. 

2006, Nagy 2008), GABAergic (Breese et al. 2006) and dopaminergic neurotransmitter 

systems (Silberman et al. 2009) in alcohol dependence and withdrawal. However, due to 

their focused nature, they cannot inform our understanding of system interaction. In contrast, 

RNA-seq (Zhou et al. 2011) and microarray (Tabakoff et al. 2009) experiments provide 

global expression data, but are typically limited to small sample numbers. Taken together, 

these previous studies have shown that withdrawal is a multigenic and time dependent 

process, characterized by progressive evolving behavior and physiology that suggests an 

accommodating molecular state. Further, the observed gene expression response is affected 

by multiple genetic, epigenetic, and individual history factors, as well as the type of alcohol 

exposure and the timing of observation within withdrawal. As such, capturing the dynamic 

contribution of the gene expression program with frequent observations is necessary, 

particularly during periods when large magnitude changes in many transcripts are expected 

as in alcohol withdrawal.

Here, we use a qPCR platform that enables the quantification of an increased number of 

sample conditions and mRNA levels. We present the expression patterns of a focused gene 

set in alcohol-withdrawn DVC samples beginning 4h after the removal of alcohol and 

continuing through 48h. With this approach, we characterize the initial changes in gene 

expression and the subsequent downstream expression wave in functionally relevant gene 

transcripts. While focused rather than global, this study offers a quantitative measure of 

temporally-coordinated changes in expression and a clustering and analysis of regulatory 

network structure for a select subset of biologically relevant neurotransmitter receptors and 

signaling systems.

Materials and Methods

Animals

Male, Sprague Dawley rats (>120g, Harlan, Indianapolis, IN) were housed individually in 

the Thomas Jefferson Alcohol Research Center Animal Core Facility. As shown in Fig. 1, 

animals were assigned to three treatment groups: control (n=39), chronic alcohol exposure 

(n=26), or withdrawal following chronic exposure (n=37). Withdrawal animals were 

assigned to one of five time points: 4, 8, 18, 32, or 48 hours (n=8, 10, 7, 6, and 6, 

respectively). Chronic and withdrawal animals were fed the Lieber-DeCarli liquid alcohol 
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diet (36% of calories as alcohol) ad libitum for at least 35 days (Lieber, DeCarli 1994, de la 

M Hall et al. 2001). Control rats were fed a liquid diet where alcohol was isocalorically 

replaced with carbohydrate and diet volume equaled the average consumption of alcohol-fed 

littermates. No differences in weight gain were noted between groups. Facilities were 

maintained at constant temperature and humidity with 12/12h light cycles (lights on at 

Zeitgeber time (ZT) 0). All protocols were approved by the TJU Institutional Animal Care 

and Use Committee.

In the Lieber-DeCarli protocol blood alcohol levels are not externally controlled during the 

experiment. Rather each animal is allowed to self-regulate its oral alcohol intake. Studies 

using the Lieber-DeCarli method in this facility and elsewhere have shown peak blood 

alcohol concentrations of 20-30mM with an average daily alcohol intake of 12-16 g/kg in 

rats following long term exposure (>3 weeks) (Lieber, DeCarli 1994, Wilson et al. 1986, 

Macey et al. 1996). In our study the average daily alcohol intake was 15.20 g/kg. There were 

no differences in average intake between the chronic alcohol exposed and withdrawn 

animals (p > 0.1; Supplemental Fig. 1). Our alcohol-fed rats feed periodically throughout the 

day and night at regular intervals that are unlikely to induce withdrawal.

To initiate withdrawal, the alcohol diet was replaced with either water or control diet. 

Matched chronically-exposed rats were given free access to alcohol diet until sacrifice. 

Previous studies and our experience show that symptomatic alcohol withdrawal in rats 

following a long term liquid alcohol diet begins within hours and resolves over a 2 to 3d 

period (Walker et al. 1975, Geisler et al. 1978, Macey et al. 1996). Studies of alcohol 

clearance following the cessation of the liquid alcohol diet have shown that clearance rate is 

approximately linear, and is reduced to less than 25% of original levels at 7h (Wilson et al. 

1986). Similarly, exposures longer than 10d on a liquid ethanol diet have been shown to 

generate physiologic evidence of dependence in withdrawal including behavioral 

manifestation of autonomic and somatic dysfunction with an increased susceptibility to 

audiogenic convulsions and other behavioral signs (Hunter et al. 1975) that are apparent by 

4h and resolve over the first 48 to 72h (Macey et al. 1996, Geisler et al. 1978). In order to 

examine the changes in gene expression that occur during this period, we sampled the 

response following chronic exposure and at 4, 8, 18, 32, and 48h after alcohol removal.

Gene Set Selection and System of Interest Identification

Gene selection was critical to experimental design. By quantitatively measuring the 

expression of many functionally-relevant genes in parallel, we defined a specific system of 

interest and gained perspective that cannot be captured by measuring changes in isolation. 

Predominantly, we chose genes for proteins known to be affected by alcohol consumption, 

alcohol withdrawal, or anxiety. This included individual GABAA (Breese et al. 2006), N-

Methyl-D-aspartic acid (NMDA) (Roberto et al. 2006, Nagy 2008), and G-protein coupled 

receptor (GPCR) subunits and downstream signaling components (Sanna et al. 2002, Liu et 

al. 2006, Lomazzi et al. 2008), as shown in a simplified schematic in Fig. 2. The selected set 

also included other targets identified by previous gene expression studies (Hashimoto et al. 

2011, Covarrubias and Khan et al. 2005, Sommer et al. 2006, Tabakoff et al. 2009, Arlinde 

et al. 2004). Additionally, to focus on the cardiovascular regulatory role of the DVC, we 
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included the genes encoding members of the angiotensin II type I receptor signaling (AT1R) 

pathway. Hypertension is a common physiological consequence of alcohol withdrawal and 

the signaling cascade is similar to that of many other GPCRs which have also been shown to 

be affected by chronic alcohol and withdrawal (Sanna et al. 2002, Lomazzi et al. 2008, Khan 

et al. 2008). In sum, the tested set includes genes implicated in previous global gene 

expression studies, focused experiments on the molecular effects of alcohol, as well as other 

functionally related genes. The result is a biased, but highly relevant gene set that can be 

examined in detail during alcohol withdrawal.

DVC Microdissection

At the assigned time of sacrifice, withdrawn, chronically alcohol-exposed, and match-fed 

control animals were sacrificed via rapid decapitation and brainstems were excised, placed 

into ice-cold artificial cerebral spinal fluid (ACSF: 10mM HEPES, pH 7.4; 140mM NaCl; 

5mM KCl; 1mM MgCl2; 1mM CaCl2; 24mM D-glucose) and secured with agarose for 

sectioning (4% UltraPure™ low melting point agarose [Invitrogen] in ACSF). 275μm 

transverse sections were made with a McIlwain Tissue Chopper (Gamshall, England) for 

DVC microdissection with size-matched micropunches (≤1.25mm; Stoelting, Wood Dale, 

IL), as previously reported (Khan et al. 2008). Bilateral punches from one animal were 

treated as a single sample. Samples for each withdrawal time point were collected at a single 

time of day (4h at ZT5 (n=8); 8h at ZT9 (n=10); 18h at ZT3 (n=7); 32h at ZT9 (n=6); 48h at 

ZT5 (n=6)). Control and chronic samples were sacrificed on the same day at the same time 

as matched fed withdrawal animals yielding a mixture of sacrifice time samples that were be 

used to normalize diurnal differences in gene expression (Control: n=7 at ZT3; n=17 at ZT5; 

and n=15 at ZT9. Chronic: n=6 at ZT3; n=6 at ZT5; and n=14 at ZT9).

qRT-PCR

Total RNA was extracted with either the RNeasy or the AllPrep DNA/RNA extraction kit 

(Qiagen, Valencia, CA), DNAase treated (DNA-Free RNA kit, Zymo Research, Orange, 

CA), and stored at −80°C. Concentration and integrity were assessed with an ND-1000 

(NanoDrop, Wilmington, DE) and RNA nano-6000 chips on an Agilent 2100 Bioanalyzer. 

cDNA was reverse transcribed with SuperScript II (Invitrogen, Carlsbad, CA) from 100ng 

total RNA and stored at −20°C.

Intron-spanning PCR primers and probes were designed using Roche’s Universal Probe 

Library Assay Design Center (www.universalprobelibrary.com). The 145 that passed our 

quality control are listed in Supplemental Table S1. The standard BioMark™ protocol was 

used to pre-amplify cDNA samples for 14 cycles using TaqMan® PreAmp Master Mix per 

the manufacturer’s protocol (Applied Biosystems, Foster City, CA). qPCR reactions were 

performed using 96.96 BioMark™ Dynamic Arrays (Fluidigm, South San Francisco, CA) 

enabling quantitative measurement of up to 96 different mRNAs in 96 samples under 

identical reaction conditions (Spurgeon et al. 2008). Runs were 40 cycles (15s at 95°C, 5s at 

70°C, 60s at 60°C). Raw CT values (Supplemental Table S2) were calculated by the Real-

Time PCR Analysis Software (Fluidigm) and software-designated failed reactions were 

discarded from analysis.
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Data Normalization and Analysis

All samples were quantile-normalized (ΔCT) using the R statistical computing package 

(Bolstad et al. 2003, Pradervand et al. 2009, http://www.r-project.org). To account for 

diurnal expression changes, ΔΔCT values were calculated by subtracting the ΔCT values 

from the average ΔCT value of all control animals sacrificed at the corresponding time of 

day. Prior to normalization for differences in sacrifice time, 46 genes in the control 

condition showed diurnal expression differences. Following normalization for sacrifice time, 

none of the genes showed expression differences within control samples based on diurnal 

time of sacrifice (ANOVA, p>0.05). These ΔΔCT values were used for all further analysis

Genes with a significant treatment effect were identified via an ANOVA with seven possible 

levels: control, chronic, and the five durations of withdrawal. Pairwise differences between 

time points were determined with post-hoc Tukey’s HSD tests. Multiple testing corrections 

based on estimated false discovery rate was performed using the q-value approach (Storey, 

Tibshirani 2003) as implemented in the qvalue library in R. Using this approach with 

conventional FDR thresholds of 10-20%, 80-90% of the genes show a statistically 

significant treatment effect (Supplemental Table 3). This statistical outcome arises from a 

very low Π0 value (Π0 = 0.09), which results from our experimental design where a 

relatively high proportion (>50%) of genes are expected to change; this differs 

fundamentally from genome scale microarray analyses where ~5% of 10,000s are expected 

to change. Furthermore, with a limited gene set (145), the number of potential false positives 

is inherently reduced (5% * 145 = 8, vs. 5% * 10,000s). Consequently, an ANOVA p-value 

cutoff of 0.05 is a more stringent inclusion criterion than ANOVA with FDR correction. 

Therefore the former was used for all subsequent analysis. All statistical tests were 

conducted at a 95% confidence level (p≤0.05).

Time series clustering of differentially expressed genes was performed using Short Time 

Series Expression Miner (STEM) (Ernst, Bar-Joseph 2006). In order to capture dynamic 

pattern similarities, all genes with a statistically significant treatment effect (ANOVA) were 

used as the input data. The user-defined parameters were set to the default settings (number 

of candidate profiles = 50, and minimal correlation threshold = 0.7). Functional enrichment 

analysis for each cluster was performed using the DAVID Bioinformatics Resource v6.7 

against the 145 tested genes as background (Huang da et al. 2007). DAVID is a freely 

available, web-based functional annotation tool that systematically identifies gene-list 

associated functional terms from the most widely accessed public databases, such as the 

Gene Ontology (GO) and KEGG Pathways in over forty categories including GO terms, 

protein–protein interactions, protein functional domains, disease associations, bio-pathways, 

sequence general features, homologies, gene functional summaries, gene tissue expressions 

and literatures. The tool identifies those terms which are statistically enriched in the subset 

of interest compared to a user-defined background set. Statistical significance of enrichment 

was determined using Fisher’s Exact Test (p≤0.05).

Finally, the background 145 gene set and individual gene clusters were analyzed for 

enrichment of shared transcription factor binding sites within 1000bp upstream of the 

transcription start sites using the Promoter Analysis and Interaction Network Toolset 
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(PAINT) (Vadigepalli et al. 2003). The PAINT analysis was performed using Entrez Gene 

IDs to retrieve promoter sequences with the TRANSFAC Professional 2009.4 algorithm 

(http://www.gene-regulation.com/pub/databases.html) and PAINT’s default settings for 

transcription regulatory elements (TRE) identification. This approach, called transcriptional 

regulatory network analysis, identifies binding sites for transcription factors that are 

statistically more common in the promoters of genes sets of interest than would be expected 

relative to their appearance in a set of promoters randomly sampled from the rat genome 

(Fisher’s Exact Test, p<0.05). As only frequencies are compared, no issues associated with 

differences in TRE definitions (length, complexity or degeneracy) influence the results. 

Significant enrichment is interpreted as evidence for true co-regulation, as well as 

suggesting a role for the corresponding transcription factor in the observed dynamics. Both 

the background set and each cluster were analyzed for evidence of over-represented 

transcription factor binding sites. Analyzing the combination of sequence and time series 

data in this manner is not unlike previous efforts (Kundaje et al. 2005) to identify gene 

regulatory network structure. Networks were exported to Cytoscape for visualization (Cline 

et al. 2007).

Results

System Differential Expression in the DVC

ANOVA revealed that 86 of the 145 genes (59%) had significant changes in expression in 

the DVC due to alcohol exposure or withdrawal. However, nearly all these effects were 

attributable to withdrawal rather than chronic exposure. Of the 86 genes, post-hoc analysis 

identified 75 genes with statistically significant difference in expression between individual 

time points in at least one pair-wise comparison (Tukey’s HSD comparisons, p≤0.05). Only 

four genes showed statistically significant differences in control and chronic alcohol 

expression levels (Gabra1, Gad1, Grin2c, and Rgs6), and all of these changes were less than 

30% (0.74-fold, 0.76-fold, 1.28-fold, and 1.26-fold, respectively; see also Fig. 4B, chronic 

ethanol panel). In contrast, 74 of the 75 genes showed significant time-point expression 

differences involving at least one withdrawal time point. As shown in Figure 3, a subset of 

27 genes had expression levels statistically different at one withdrawal time in comparison 

to both dependent and control samples, indicating a unique withdrawal expression state. In 

general, withdrawal changes were larger in magnitude, ranging from 1.3-fold to 3.7-fold; the 

mean statistically significant withdrawal-induced expression change was 1.77-fold (median: 

1.67-fold).

Early System Alcohol Withdrawal Expression Changes

DVC samples showed widespread large-magnitude gene expression changes in the selected 

subset of genes after removal of the alcohol diet. “Early” 4h and 8h measures are mapped 

onto conventional pathway maps in Fig. 4B. At 4h, in addition to the upregulation of IEGs 

Creb, Fosl1, Egr1 and Jun, we also observed downregulation in genes encoding ionotropic 

glutamate receptors Gria2, Grik3, Grin1, Grin2a, Grin2d and Grin3a; the sodium and 

potassium channels Scn4b, Kcnj9, and Kcna2; and the GABAA receptor subunits Gabra1, 

Gabrq, and Gabrg3. Concomitantly, we saw downregulation of genes for Ras/Raf signaling 

components and an upregulation in negative signaling regulators including Dusp6, Rgs2, 
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Rgs4 and Rgs6. At 8h, while the upregulation in the expression of Fosl1, Egr1, Junb, Jund, 

Creb and Crebbp mRNAs was sustained, there was a noticeable shift in the expression of the 

glutamate, GABAA, GPCR, Ras/Raf and RGS family transcripts, showing less intense 

changes in expression levels compared to those seen at 4h.

Mid to Late System Withdrawal Expression Changes

At 18h mid withdrawal, we observed a prominent induction in the measured set for mRNAs 

encoding membrane receptors and ion channels (Fig. 4B, 18h), transitioning from earlier 

active downregulation. This change included members of the GABAA, NMDA and GPCR 

families, including corticotropin-releasing factor, neurotropin, and growth factor receptor 

subunits (Ntrk2, Crhr1, and Fgfr2). Further, this induction coincided with repression of RGS 

family members, known inhibitors of GPCR signaling. At this time point, we typically 

observe a decrease in our rats’ phenotypic withdrawal intensity, but without complete 

resolution of signs of agitation and feeding disturbance. This may indicate that these 

changes in receptor expression are necessary for the complete resolution of withdrawal 

symptoms. Also of note, there is a distinct transition in the measured transcription factors’ 

expression from dominant induction to a picture of mixed of up and down regulation, 

marking a transition from mid to late withdrawal.

By 32 to 48h, physiologic and behavioral withdrawal signs are largely resolved and in our 

system the number of statistically significant expression changes decreased. Specifically, at 

32h, most induction occurred in genes encoding intracellular signaling proteins, particularly 

those involved in the Ras/Raf kinase pathway. Active suppression increased from 32 to 48h 

involving transcripts from nearly all of the functional classes, coinciding with another 

transition in gene expression activity that suggests the involvement of distinct and novel 

processes beyond those measured at 48h. The number of involved genes and magnitude of 

their expression change resolved over time, and at 48h, only five genes had quantitative 

expression levels significantly different from control values by post-hoc testing: Creb, Clu, 

Rgs4, Pebp1, and Zeb1. While post-hoc testing only represents a subset of the total dynamic 

picture at a given time point, these five genes represent those that are the most different from 

controls at 48h.

Correlated Expression and Regulatory Analysis

The STEM algorithm (Ernst and Bar-Joseph 2006) was used to identify genes with 

correlated expression over time and examine relevant regulatory networks. STEM analysis 

identified seven statistically significant clusters, as shown in Table 1. The seven clusters 

have variable expression patterns; however, they can be classified into three main groups: 

oscillatory (clusters 1, 2 and 7), early down regulation followed by late upregulation 

(clusters 3, 4 and 6), and early upregulation at 4h with later down regulation (cluster 5). The 

oscillatory expression varies significantly from measurement to measurement, and may 

reflect transcriptional bursting (Chubb et al. 2006, Golding et al. 2005, Raj et al. 2008). In 

all cases the clusters’ members are functionally related, and include multiple surface 

receptor systems and their downstream signaling components (Table 1. Functional 

associations). Over-represented binding sites for the transcription factors are found within 

each group, offering evidence of co-regulation (Table 1. Over-represented TF binding sites). 
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TREs that were over-represented in a cluster in comparison to the genome are listed, 

representing the most relevant subset of TFs binding sites found in the initial 145 gene set. 

Bold face text indicates which of these TREs were also enriched in the cluster relative to the 

145 tested, providing additional statistical support of their relevance. Three TREs were 

enriched only when the cluster was compared to the 145 gene set, but not in the 145 versus 

the genome (italics): a TFE site in Cluster 1 (cluster v. 145 p=0.02; 145 v. genome p=0.98), 

and KAISO (cluster v. 145 p=0.04; 145 v. genome p=0.89) and LEF1/TCF1 sites (cluster v. 

145 p=0.05; 145 v. genome p=0.85) in Cluster 6. A complete description of the transcription 

factor binding site analysis, including the retrieved promoter sequence, all identified 

promoter regulatory elements, and results of the statistical analysis for all possible 

comparisons can be found in Supplemental Table S4.

As a result of its relevant membership which includes Grin2a, Grin3a, Grik3, Gabra1, Ptpre, 

and Prckg, Cluster 4 was selected for detailed discussion here (Fig. 5). The co-expression of 

glutamate receptors and GABAA receptors over time may suggest a role for expression-

based maintenance of excitatory-inhibitory balance. This group of six genes underwent early 

suppression followed by peak induction at 18h (cluster p-value≤0.01; Fig. 5). Five of the six 

clustered genes encode proteins that are either ion channels or receptors. The sixth, Prkcg, 

encodes PKC-gamma and is known to be stress responsive at the gene expression level and 

to play a role in glutamate receptor regulation (Lin et al. 2006). This cluster is further 

enriched for genes associated with the terms receptor linked signal transduction (≤0.05), 

neurological system process (≤0.05), synapse (≤0.05), neurotransmitter binding (≤0.05), and 

glutamate receptor activity (≤0.01). Comparison of the upstream promoter regions indicated 

that the group shares known transcription factor binding sites for Deaf1, Hic1, Myb, Maz, 

Pax-8, and Sp1 and can be connected in the regulatory network shown in Fig. 5C. Sp1 was 

measured experimentally and its quantitative level increased significantly at 4h, prior to 

increased expression in the cluster, providing additional temporal evidence for its regulatory 

role during alcohol withdrawal. Pax-8 had additional statistical support for its role, being 

over-represented in the cluster in comparison to the 145-gene test set (p=0.02). Additional 

figures for the six remaining clusters can be found in the supplement.

NMDA and GABAA Receptor Subunit Expression

As a result of the clustering of NMDA and GABAA subunit genes, and general interest in 

these receptor families, we have highlighted their expression in Fig. 6. During withdrawal, 

there were time dependent changes in the subunit expression of both receptor families. 

Among GABAA receptor subunits, Gabrg3 shows the most rapid response, with over a 2-

fold decrease from dependent levels at 4h. Gabra1 and Gabrq show more delayed dynamics, 

with large inductions between 8 and 18h that resolve by 32h. Gabrb1 and Gabra3 show more 

gradual changes, reaching a minimum at 4h and peaking at 18h.

NMDA receptor subunits Grin2a, Grin2c, Grin2d and Grin3a all show similar expression 

patterns, with decreased expression in chronic samples that undergoes further down 

regulation in the first 4h of withdrawal. This decrease is transient and is followed by an 

increase in expression around 18h: dynamics similar to those seen in the GABAA receptor 

family transcripts. Grin2c is unique among NMDA receptor subunits by having increased 
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mRNA levels in chronically alcohol exposed DVC samples (Tukey’s HSD test, p≤0.05). 

However during withdrawal, it also follows the pattern of early decreased expression 

followed by induction. These quantitative measures suggest that the DVC experiences 

altered excitatory and inhibitory states beginning early in alcohol withdrawal that change 

dynamically over the first 48h.

Discussion

Overall, our quantitative time series results show a limited expression change in chronically 

exposed DVC samples in contrast to a multi-gene expression response during withdrawal. In 

withdrawal, the expression of genes encoding IEGs, GABAA, iontotropic glutamate and 

GPC receptors and the Ras/Raf signaling pathways demonstrated a complex temporally 

coordinated response. These changes were immediate and readily apparent at 4h as 

upregulation in IEGs and the concomitant downregulation of genes encoding membrane 

receptors and downstream signaling pathways. At 18h the genes for many of these receptors 

were upregulated, including members of the NMDA, GABAA and opioid receptor families. 

Shared transcription factor binding sites in a group of genes with similar time series 

expression, including Gabra1, Grin2a, Grin3a and Grik3, predict a transcription factor 

regulatory network during withdrawal centered around Myb, Pax-8, Maz and Sp1.

The experimental design used in this analysis is relatively novel, based on 102 samples and 

145 PCR assays measured over a 48h time period. As a focused study, this approach 

certainly misses genes undergoing significant changes in expression with important effects 

on withdrawal biology; however this focus allows us to look at a limited a panel of genes in 

more detail. As such, the statistical approach was matched accordingly. Analysis with 

established approaches for estimating FDR indicated that 80-90% of the measured data 

showed statistically significant changes (Supplemental Table 3). However, as FDR 

correction measures are based on the assumption that gene expression measures are 

independent and uncorrelated, we used a more stringent criterion based on the individual p-

values by ANOVA and several downstream analyses such as functional annotation and 

promoter analysis to further refine the results. Further, the study of expression changes over 

time introduces additional complexity resulting from diurnal expression changes. While the 

experiment and statistical analyses attempt to account for these differences by including 

sacrifice-time matched controls, we cannot account for confounding withdrawal-diurnal 

expression relationships that occur uniquely in withdrawal animals. Alcohol usage has been 

shown to modulate circadian activity (Norrell et al. 2010, Rosenwater et al. 2010), and 

withdrawal-circadian interactions have been the focus of previously published withdrawal 

studies (Melendez et al. 2011, Logan et al. 2011) and this laboratory (Staehle et al, in 

progress). Consequently, the results of these analyses are based on evidence that, after 

sacrifice-specific normalization, (1) a significant change in expression was seen over time, 

(2) multiple genes follow that expression pattern, (3) the groups are annotated for specific 

relevant functions, and (4) they share over representation of specific transcription factor 

binding sites in their promoter region. Hence they can be regarded as reasonably resistant to 

false positives and withdrawal-diurnal expression correlations. For example, the PAINT 

results from cluster 4 are based on a group of 6 genes that share synaptic functions, with 

enriched promoter regulatory elements that are not dependent on any one or two genes 
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individually, but are based on several genes that share similar expression patterns over time 

(Figure 5). Recent developments indicate that this approach is fruitful even when scaled up 

to tens of thousands of genes measured using microarrays. Further, in extreme cases in 

genomic experiments, all gene expression data can be used in clustering, pattern and module 

identification without initial filtering for significant change, relying solely on statistical 

evaluation of the grouping (e.g., WGCNA: Zhang et al. 2005, Oldham et al. 2008, Clarke et 

al. 2011).

In light of the autonomic instability experienced following the cessation of chronic alcohol 

intake (Bar et al. 2008), dynamic expression changes in the DVC are of considerable 

interest. The role of the DVC neurons sampled in this study is to integrate inputs from the 

viscera, to maintain homeostatic cardiovascular stability, and to relay information to 

hypothalamic, limbic and forebrain structures (Schwaber et al. 1982). Recent studies 

quantifying human cerebral blood flow during the first 24h of “moderate to severe” 

symptomatic alcohol withdrawal showed significantly elevated systolic blood pressure and 

cerebral blood flow (Jochum et al. 2010). The DVC would be expected to receive 

information about these changes and respond to alter sympathetic outflow. These 

quantitative expression changes may represent a portion of the molecular response necessary 

to achieve this new homeostatic balance. Additionally, as a result of the DVC relays to 

emotional and reward circuits, particularly dense in the central amygdala (Schwaber et al. 

1982), these findings may be important for emotional and endocrine dysregulation 

(Silberman et al. 2009).

Because the DVC is a homeostatic center, we would expect its molecular activity to parallel 

its physiologic regulatory function (Khan et al. 2008). This idea is supported by the 

comparison of expression changes seen during chronic alcohol exposure and withdrawal. In 

the exposed state, we saw relatively few changes are seen with qPCR measurement. 

Functionally, these genes, Grin2c, Gabra1, Gad1 and Rgs6, modulate GABA and glutamate 

neurotransmission, either directly or through regulatory relationships (Liu et al. 2006, 

Lomazzi, et al. 2008). These limited changes are consistent with our previous microarray 

study during chronic alcohol exposure that identified differential expression in only 6% of 

genes (Covarrubias and Khan et al. 2005). Other global expression studies in the frontal 

cortex, nucleus accumbens and amygdala have shown changes in approximately 2% of 

genes (Tabakoff et al. 2009, Arlinde et al. 2004). Together, these findings suggest that 

chronically alcohol exposed animals are in a molecularly adapted dependent state that 

cannot be identified by sustained gene expression changes.

In contrast, withdrawal’s profound physiologic challenge is rapidly reflected in quantitative 

measures of DVC gene expression. The withdrawal time points showed broad, large-

magnitude expression changes across all measured systems, in 86 of the 145 genes studied. 

While studies of gene expression changes in the DVC within the first 48h of alcohol 

withdrawal are limited, there is a considerable literature addressing early changes in other 

brain regions, particularly in transcription factors such as cFos (Kozell et al. 2005), Egr1 

(Depaz, et al. 2000), SP1 (Wilce et al. 1994) and calcium signaling systems (Silberman et al. 

2009). The burst of expression change after the removal of alcohol marks a transition from a 
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steady-state condition and suggests that withdrawal results in a rapid and severe alteration in 

cellular signaling that triggers the expression.

Other novel observations in this experiment include the rapidity of the expression response 

in non-IEGs. While early studies (less than 12h) in alcohol withdrawal are limited, focused 

dynamic expression studies in other conditions have proposed similar time scales, including 

increased Grin2b expression 3h after cytokine stimulation (Nicolai et al. 2010) and a model 

of long term potentiation that within minutes shows nuclear translocation of Jacob protein, a 

coupler of glutamate signaling to transcription changes (Jacob et al. 2008). Our results 

indicate that the early expression response involves nearly all of the sampled systems. All 

told, these findings present a potential link between intense autonomic stress, withdrawal 

related increases in calcium signaling, and changes in DVC gene expression on the order of 

minutes to hours. It is plausible that the initial widespread down-regulation represents a 

protective response to rebound excitatory signaling seen following chronic exposure-

induced enhancement of excitatory glutamate (Roberto et al. 2006) and calcium pathways 

and attenuation of GABA signaling.

More broadly, qPCR measurement showed a temporal progression of functionally related 

gene products. We observed an initial induction of expression in IEGs, other transcription 

factors and epigenetic regulators. Following, we saw induction of genes encoding receptors 

and channels, indicating that these may be downstream of the initial changes. This suggests 

that expression plays a role in altering the membrane protein composition following 

cessation of the alcohol diet. Finally, we saw adjustment in the expression of intracellular 

signaling components, which could be required for fine-tuning signaling systems following 

changes in receptor and channel composition. In focused experiments, many of these 

systems have been implicated in the pathology of alcohol use disorders including receptors, 

channels, transcription factors (Kozell et al. 2005, Depaz et al. 2000), and Ras/Raf and 

MAPK signaling (Sanna et al. 2002). Combining these quantitative measurements in a time 

series gives insight into how these systems interact and the temporal progression of 

expression changes. However, due to the focused nature of this data set, generalizability of 

these rapid changes to other gene systems and brain regions is unknown.

Time series clustering analysis revealed the correlated expression of a several groups of 

transcripts (Table 1). In each case, the expression profiles were common to a statistically 

significant number of genes, had known functional associations and shared over 

representation of specific transcription factors in their promoter regions. Combining these 

analyses of quantitative temporal expression measurement with putative common 

transcription factor binding sites points to a plausible mechanism of coordination for the 

clusters and many specific functions including GCPR signaling (cluster 1), GABA reuptake 

and transport (Cluster 2), glutamate receptor activity (Cluster 4), Mapk signaling (Cluster 5) 

and protein phosphatase activity (Cluster 7). Additionally, transcription factors Ap-2, E2, 

Sp1, ETF, Krox, Hic-1 and Zf5 are over-represented in at least two clusters. This suggests 

that these transcription factors are ubiquitous and may generate a permissive role for 

dynamic changes in expression during alcohol withdrawal. For example, prior literature has 

shown that SP1 is recruited to promoter regions following periods of intense depolarization 

(Harikrishnan et al. 2010), as would be expected in alcohol withdrawal. Similar activity has 
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also been reported for Egr family transcription factors, which bind Krox regulatory elements 

early in alcohol withdrawal (Depaz et al. 2000). Hic1 is a tumor suppressor related to the 

regulation of cell death and stress responses (Van Rechem et al. 2009). In contrast, the 

transcription factors that are enriched within a single cluster, such as Gabp, Hnf4α (Cluster 

1), Foxq1 (Cluster 6) and Pax-8 (Cluster 4) may help convey specificity to the expression 

profile.

A single temporal expression cluster included both the glutamate receptors Grin2a, Grin3a 

and Grik3, and GABAA receptor Gabra1. Only Gabra1 showed significantly altered 

expression following chronic exposure. The correlated expression of GABAA and NMDA 

receptor subunits suggests a role for expression in the reestablishment of excitatory and 

inhibitory balance during withdrawal. Additionally, expression changes in interacting but 

distinct membrane receptors suggests that these subunits are not expressed independently 

during alcohol withdrawal and likely share a common regulatory mechanism (Eisen et al. 

1998, Qian et al. 2001). The proposed regulatory network combines SP1, Myb, Pax-8 and 

Maz, all of which are found in at least 3 of the 6 clustered genes, to enable concerted 

changes. Among these, Myb, Pax-8, and Maz are unique to the cluster. Pax family 

transcription factors have been implicated in fetal alcohol syndrome (Talens-Visconti et al. 

2011). Maz is commonly studied for its role in regulating the expression of 

phenylethanolamine N-methyltransferase (Her et al. 2003). This enzyme converts 

norepinephrine to epinephrine, particularly relevant to the DVC during withdrawal where 

adrenergic modulation of A2 neurons is a key control point for central cardiovascular 

pathways (Vadigepalli et al. 2011). Myb is most widely studied for its role in regulating cell 

cycle (Gewirtz et al. 1989), and has been implicated in cellular proliferation associated with 

hepatic fibrosis (Okazaki et al. 2000), commonly associated with alcohol use. Their presence 

in this regulatory network further supports the existence of an expression program signature 

of an excitotoxic state and suggests a novel role for the involvement of these transcription 

factors during alcohol withdrawal representing neurotransmitter system cross-talk at the 

level of gene expression.

The insights provided by this study arise as a consequence of the quantitative measurement 

of many functionally-relevant genes in parallel across time. Taken together, these 

measurements show early and widespread changes in gene expression during alcohol 

withdrawal consistent with a protective response from excitotoxicity. This finding 

emphasizes the importance of examining early gene expression changes in functionally 

relevant systems. Our results also provide evidence for regulatory relationships coordinating 

the expression of interacting neurotransmission and intracellular signaling systems. Further, 

validation of the putative transcription factor regulatory networks can be sought using 

chromatin immunoprecipitation studies. Extension of these approaches to other brain 

regions, additional time series and other functionally-specific gene sets may lead to 

increased insight into how changes in gene expression relate to pathologic neuronal behavior 

during alcohol withdrawal.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Freeman et al. Page 13

Alcohol Clin Exp Res. Author manuscript; available in PMC 2015 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

This work was supported by grants from the NIH (R01 AA-015601, R01 GM-083108, R01 GM-076495 and R33 
HL-087361 to JSS, GM-083108 to JSS and RV, R33 HL088283 to RV, R24 AA-014986 to JBH, and T32 
AA-007463 support of KF and MMS). ZHG gratefully acknowledges support from The HRH Prince Alwaleed Bin 
Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine (ICB), and the computational resources of the 
Coffrin Center for Biomedical Information, (ICB) at Weill Cornell Medical College of Cornell University. The 
high-dimensional qPCR was performed with the generous help of Fluidigm, South San Francisco, CA. We also 
wish to thank Buğra Özer, Monica Payne, and Peter Ucciferro for assistance with experiments and analysis, and the 
TJU Alcohol Research Center, especially Dr. Biddanda Ponnappa, John Mullen, and Permelia Mullen, for their 
support with the animal model.

References

Arlinde C, Sommer W, Bjork K, Reimers M, Hyytia P, Kiianmaa K, Heilig M. A cluster of 
differentially expressed signal transduction genes identified by microarray analysis in a rat genetic 
model of alcoholism. Pharmacogenomics J. 2004; 4:3208–218.

Bar KJ, Boettger MK, Schulz S, Neubauer R, Jochum T, Voss A, Yeragani VK. Reduced cardio-
respiratory coupling in acute alcohol withdrawal. Drug Alcohol Depend. 2008; 98:3210–217.

Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high 
density oligonucleotide array data based on variance and bias. Bioinformatics. 2003; 19:2185–193.

Breese GR, Criswell HE, Carta M, Dodson PD, Hanchar HJ, Khisti RT, Mameli M, Ming Z, Morrow 
AL, Olsen RW, Otis TS, Parsons LH, Penland SN, Roberto M, Siggins GR, Valenzuela CF, 
Wallner M. Basis of the Gabamimetic Profile of Ethanol. Alcohol Clin Exp Res. 2006; 30:4731–
744.

Chubb JR, Trcek T, Shenoy SM, Singer RH. Transcriptional pulsing of a developmental gene. Curr 
Biol. 2006; 16:101018–1025.

Clarke C, Doolan P, Barron N, Meleady P, O’Sullivan F, Gammell P, Melville M, Leonard M, Clynes 
M. Large scale microarray profiling and coexpression network analysis of CHO cells identifies 
transcriptional modules associated with growth and productivity. J Biotechnol. 2011; 155:3350–
359.

Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, 
Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono 
K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, 
Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD. Integration of biological networks 
and gene expression data using Cytoscape. Nat Protoc. 2007; 2:102366–2382.

Covarrubias MY, Khan RL, Vadigepalli R, Hoek JB, Schwaber JS. Chronic alcohol exposure alters 
transcription broadly in a key integrative brain nucleus for homeostasis: the nucleus tractus 
solitarius. Physiol Genomics. 2005; 24:145–58.

de la M Hall P, Lieber CS, DeCarli LM, French SW, Lindros KO, Jarvelainen H, Bode C, Parlesak A, 
Bode JC. Models of alcoholic liver disease in rodents: a critical evaluation. Alcohol Clin Exp Res. 
2001; 25(5 Suppl):254–261.

Depaz IM, Goodenough S, Wilce PA. Chronic ethanol has region-selective effects on Egr-1 and Egr-3 
DNA-binding activity and protein expression in the rat brain. Neurochem Int. 2000; 37:5–6473.

Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide 
expression patterns. Proc Natl Acad Sci USA. 1998; 95:2514863–14868.

Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC 
Bioinformatics. 2006; 7:191. [PubMed: 16597342] 

Eyer F, Schuster T, Felgenhauer N, Pfab R, Strubel T, Saugel B, Zilker T. Risk assessment of 
moderate to severe alcohol withdrawal--predictors for seizures and delirium tremens in the course 
of withdrawal. Alcohol Alcohol. 2011; 46:4427–433.

Geisler RF, Hunter BE, Walker DW. Ethanol dependence in the rat: temporal changes in 
neuroexcitability following withdrawal. Psychopharmacology. 1978; 56:3287–292.

Freeman et al. Page 14

Alcohol Clin Exp Res. Author manuscript; available in PMC 2015 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gewirtz AM, Anfossi G, Venturelli D, Valpreda S, Sims R, Calabretta B. G1/S transition in normal 
human T-lymphocytes requires the nuclear protein encoded by c-myb. Science. 1989; 
245:4914180–183.

Golding I, Paulsson J, Zawilski SM, Cox EC. Real-time kinetics of gene activity in individual bacteria. 
Cell. 2005; 123:61025–1036.

Harikrishnan KN, Bayles R, Ciccotosto GD, Maxwell S, Cappai R, Pelka GJ, Tam PP, Christodoulou 
JEl, Osta A. Alleviating transcriptional inhibition of the norepinephrine slc6a2 transporter gene in 
depolarized neurons. J Neurosci. 2010; 30:41494–1501.

Hashimoto JG, Forquer MR, Tanchuck MA, Finn DA, Wiren KM. Importance of genetic background 
for risk of relapse shown in altered prefrontal cortex gene expression during abstinence following 
chronic alcohol intoxication. Neuroscience. 2011; 173:57–75. [PubMed: 21081154] 

Her S, Claycomb R, Tai TC, Wong DL. Regulation of the rat phenylethanolamine N-methyltransferase 
gene by transcription factors Sp1 and MAZ. Mol Pharmacol. 2003; 64:51180–1188.

Huang da W, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane 
HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel 
algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007; 35:169–175.

Hunter BE, Riley JN, Walker DW. Ethanol dependence in the rat: a parametric analysis. Pharmacol 
Biochem Behav. 1975; 3:4619–629.

Jacob TC, Moss SJ, Jurd R. GABAA receptor trafficking and its role in the dynamic modulation of 
neuronal inhibition. Nat Rev Neurosci. 2008; 9:5331–343.

Jochum T, Reinhard M, Boettger MK, Piater M, Bar KJ. Impaired cerebral autoregulation during acute 
alcohol withdrawal. Drug Alcohol Depend. 2010; 110:3240–246.

Khan RL, Vadigepalli R, McDonald MK, Rogers RF, Gao GR, Schwaber JS. Dynamic transcriptomic 
response to acute hypertension in the nucleus tractus solitarius. Am J Physiol Regul Integr Comp 
Physiol. 2008; 295:15–27.

Koob GF. Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction 
as a Reward Deficit Disorder. Curr Top Behav Neurosci. 2011 [Epub ahead of print]. 

Kozell LB, Hitzemann R, Buck KJ. Acute alcohol withdrawal is associated with c-Fos expression in 
the basal ganglia and associated circuitry: C57BL/6J and DBA/2J inbred mouse strain analyses. 
Alcohol Clin Exp Res. 2005; 29:111939–1948.

Kundaje A, Middendorf M, Gao F, Wiggins C, Leslie C. Combining sequence and time series 
expression data to learn transcriptional modules. IEEE/ACM Trans Comput Biol Bioinform. 2005; 
2:3194–202.

Lieber CS, DeCarli LM. Animal models of chronic ethanol toxicity. Methods Enzymol. 1994; 
233:585–594. [PubMed: 8015491] 

Lin D, Barnett M, Lobell S, Madgwick D, Shanks D, Willard L, Zampighi GA, Takemoto DJ. 
PKCgamma knockout mouse lenses are more susceptible to oxidative stress damage. J Exp Biol. 
2006; 209:214371–4378.

Liu W, Yuen EY, Allen PB, Feng J, Greengard P, Yan Z. Adrenergic modulation of NMDA receptors 
in prefrontal cortex is differentially regulated by RGS proteins and spinophilin. Proc Natl Acad Sci 
USA. 2006; 103:4818338–18343.

Logan RW, McCulley WD, Seggio JA, Rosenwasser AM. Effects of Withdrawal from Chronic 
Intermittent Ethanol Vapor on the Level and Circadian Periodicity of Running-Wheel Activity in 
C57BL/6J and C3H/HeJ Mice. Alcohol Clin Exp Res. 2011 [Epub ahead of print]. 

Lomazzi M, Slesinger PA, Luscher C. Addictive drugs modulate GIRK-channel signaling by 
regulating RGS proteins. Trends Pharmacol Sci. 2008; 29:11544–549.

Macey DJ, Schulteis G, Heinrichs SC, Koob GF. Time-dependent quantifiable withdrawal from 
ethanol in the rat: Effect of method of dependence induction. Alcohol. 1996; 13:2163–170.

Melendez RI, McGinty JF, Kalivas PW, Becker HC. Brain region-specific gene expression changes 
after chronic intermittent ethanol exposure and early withdrawal in C57BL/6J mice. Addict Biol. 
2011 [Epub ahead of print]. 

Mendez M, Morales-Mulia M. Role of mu and delta opioid receptors in alcohol drinking behaviour. 
Curr Drug Abuse Rev. 2008; 1:2239–252.

Freeman et al. Page 15

Alcohol Clin Exp Res. Author manuscript; available in PMC 2015 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Morris SA, Kelso ML, Liput DJ, Marshall SA, Nixon K. Similar withdrawal severity in adolescents 
and adults in a rat model of alcohol dependence. Alcohol. 2010; 44:189–98.

Nagy J. Alcohol related changes in regulation of NMDA Receptor Function. Current 
Neuropharmacology. 2008; 6:139–54.

Nicolai J, Burbassi S, Rubin J, Meucci O. CXCL12 inhibits expression of the NMDA receptor’s NR2B 
subunit through a histone deacetylase-dependent pathway contributing to neuronal survival. Cell 
Death Dis. 2010; 1:33.

Norrell S, Reyes-Vasquez C, Burau K, Dafny N. Alcohol usage and abrupt cessation modulate diurnal 
activity. Brain Res Bull. 2010; 83:1–257. [PubMed: 20599594] 

Obara I, Bell R, Goulding SP, Reyes CM, Larson L, Ary A, Truitt W, Szumlinski K. Differential 
Effects of Chronic Ethanol Consumption and withdrawal on Homer/Glutamate Receptor 
Expression in Subreions of the Accumbens and Amygdala of P Rats. Alcohol Clin Exp Res. 2009; 
33:111924–1934.

Okazaki I, Watanabe T, Hozawa S, Arai M, Maruyama K. Molecular mechanism of the reversibility of 
hepatic fibrosis: with special reference to the role of matrix metalloproteinases. J Gastroenterol 
Hepatol. 2000; 15(Suppl):26–32. [PubMed: 10719743] 

Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, Geschwind DH. Functional 
organization of the transcriptome in human brain. Nat Neurosci. 2008; 11:111271–1282.

Pradervand S, Weber J, Thomas J, Bueno M, Wirapati P, Lefort K, Dotto GP, Harshman K. Impact of 
normalization on miRNA microarray expression profiling. RNA. 2009; 15:3493–501.

Prendergast MA, Harris BR, Mullholland PJ, Blanchard JA, Gibson DA, Holley RC, Littleton JM. 
Hippocampal CA1 region neurodegeneration produced by ethanol withdrawal requires activation 
of intrinsic polysynaptic hippocampal pathways and function of N-methyl-D-aspartate receptors. 
Neuroscience. 2004; 124:4869–877.

Qian J, Dolled-Filhart M, Lin J, Yu H, Gerstein M. Beyond synexpression relationships: local 
clustering of time-shifted and inverted gene expression profiles identifies new, biologically 
relevant interactions. J Mol Biol. 2001; 314:51053–1066.

Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its 
consequences. Cell. 2008; 135:2216–226.

Roberto M, Bajo M, Crawford E, Madamba SG, Siggins GR. Chronic ethanol exposure and protracted 
abstinence alter NMDA receptors in central amygdala. Neuropsychopharmacology. 2006; 
31:5988–996.

Rosenwasser AM. Circadian clock genes: non-circadian roles in sleep, addiction, and psychiatric 
disorders. Neurosci Biobehav Rev. 2010; 34:81249–1255.

Sanna PP, Simpson C, Lutjens R, Koob G. ERK regulation in chronic ethanol exposure and 
withdrawal. Brain Res. 2002; 948:1–2186. [PubMed: 12383949] 

Schwaber J, Kapp B, Higgins G, Rapp P. Amygdaloid and basal forebrain direct connections with the 
nucleus of the solitary tract and the dorsal motor nucleus. J Neurosci. 1982; 2:101424–1438.

Silberman Y, Bajo M, Chappell AM, Chrisitan DT, Cruz M, Diaz M, Kash T, Läck AK, Messing R, 
Siggins G, Winder D, Roberto M, McCool B, Weiner J. Neurobiological mechanisms contributing 
to alcohol-stress-anxiety interactions. Alcohol. 2009; 43:509–519. [PubMed: 19913194] 

Sommer W, Hyytia P, Kiianmaa K. The alcohol-preferring AA and alcohol-avoiding ANA rats: 
neurobiology of the regulation of alcohol drinking. Addict Biol. 2006; 11:3–4289.

Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real 
time PCR in a microfluidic dynamic array. PLoS One. 2008; 3:1662.

Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 
2003; 100:169440–9445.

Tabakoff B, Saba L, Printz M, Flodman P, Hodgkinson C, Goldman D, Koob G, Richardson HN, 
Kechris K, Bell RL, Hubner N, Heinig M, Pravenec M, Mangion J, Legault L, Dongier M, 
Conigrave KM, Whitfield JB, Saunders J, Grant B, Hoffman PL. WHO/ISBRA Study on State and 
Trait Markers of Alcoholism Genetical genomic determinants of alcohol consumption in rats and 
humans. BMC Biol. 2009; 7:70. [PubMed: 19874574] 

Freeman et al. Page 16

Alcohol Clin Exp Res. Author manuscript; available in PMC 2015 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Talens-Visconti R, Sanchez-Vera I, Kostic J, Perez-Arago MA, Erceg S, Stojkovic M, Guerri C. 
Neural differentiation from human embryonic stem cells as a tool to study early brain development 
and the neuroteratogenic effects of ethanol. Stem Cells Dev. 2011; 20:2327–339.

Vadigepalli R, Chakravarthula P, Zak DE, Schwaber JS, Gonye GE. PAINT: a promoter analysis and 
interaction network generation tool for gene regulatory network identification. OMICS. 2003; 
7:3235–252.

Vadigepalli R, Gonye G, Paton JF, Schwaber J. Adaptive transcriptional dynamics of A2 neurons and 
central cardiovascular control pathways. Exp.Physiol. 2011 [Epub ahead of print]. 

Van Rechem C, Rood BR, Touka M, Pinte S, Jenal M, Guerardel C, Ramsey K, Monte D, Begue A, 
Tschan MP, Stephan DA, Leprince D. Scavenger chemokine (CXC motif) receptor 7 (CXCR7) is 
a direct target gene of HIC1 (hypermethylated in cancer 1). J Biol Chem. 2009; 284:3120927–
20935.

Vilpoux C, Warnault V, Pierrefiche O, Daoust M, Naassila M. Ethanol-sensitive brain regions in rate 
and mouse: a cartographic review, using immediate early gene expression. Alcohol Clin Exp Res. 
2009; 33:6945–969.

Walker DW, Hunter BE, Riley J. A behavioral and electrophysiological analysis of ethanol 
dependence in the rat. Adv Exp Med Biol. 1975; 59:353–372. [PubMed: 1237223] 

Wilce P, Beckmann A, Shanley B, Matsumoto I. Gene expression during ethanol withdrawal. Alcohol 
Alcohol. 1994; (Suppl. 2):97–102.

Wilson JS, Korsten MA, Lieber CS. The combined effects of protein deficiency and chronic ethanol 
administration on rat ethanol metabolism. Hepatology. 1986; 6:5823–829.

Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat 
Appl Genet Mol Biol. 2005; 4 Article17. 

Zhou Z, Yuan Q, Mash DC, Goldman D. Substance-specific and shared transcription and epigenetic 
changes in the human hippocampus chronically exposed to cocaine and alcohol. Proc Natl Acad 
Sci USA. 2011; 108:166626–6631.

Freeman et al. Page 17

Alcohol Clin Exp Res. Author manuscript; available in PMC 2015 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Experimental design. (A) A schematic of the experimental design. Animals were assigned to 

one of three treatment groups: control, chronic alcohol exposure, or withdrawal (with 

specific withdrawal time points covering the symptomatic period). The five time points 

selected for study are indicated, ranging from 4 to 48 hours after withdrawal. These were 

selected to capture early transcription changes as well as later changes associated with 

adaptation to withdrawal and the typical behavioral response after alcohol removal in the 

Lieber-DeCarli rat model. Control and chronic exposure animals were sacrificed at the same 

time as the withdrawal animal to account for differences in diurnal expression (ZT 

(Zeitgeber time) matched as indicated).
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Fig. 2. 
Neurobiological systems of interest assayed by qPCR. The schematic shows the biological 

systems targeted for study including excitatory and inhibitory neurotransmission, receptor-

driven intracellular signaling and transcriptional regulation. Major functional groups and 

signaling pathways are highlighted in bold. Compartments represented include the 

presynaptic terminal and membrane, and the postsynaptic membrane, cytoplasm and 

nucleus. Receptor subunits, isoforms, and family members assigned to the functional 

categories are listed in the attached shaded boxes. This schematic’s relative positioning is 

maintained in the data mapping shown in Figure 4.
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Fig. 3. 
Statistical testing results. Of the 86 genes with a significant ANOVA alcohol treatment 

effect, post-hoc analysis (Tukey’s MSD comparisons, p≤0.05) revealed that 74 genes 

showed statistically significant expression changes in one withdrawal time point as 

compared to at least one other treatment group (control, chronic ethanol, 4, 8 18 32 or 48h 

withdrawal). The Venn diagram in (A) shows the subsets of significant changes by Tukey’s 

MSD comparison. The majority of these changes occurred during withdrawal (white circle) 

and did not always coincide with deviations from the control (black circle) or alcohol-

exposed (grey circle) states. The numbers within each segment indicate the number of genes 

with statistically significant changes in gene expression under the indicated pairwise 

comparison. Genes with a change in any withdrawal time point comparison difference are 

included in the white group. (B) Significant gene expression differences between two time 

points during withdrawal by pairwise comparisons of the 71 genes with significant gene 

expression changes (white circle in panel (A)). The small numbers above the lines 

connecting time points represent the number of genes with significant differences in that 

comparison. These comparisons are not mutually exclusive; a single gene may be counted in 

multiple comparisons.
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Fig. 4. 
Cellular and signaling pathway view of gene expression changes during alcohol withdrawal. 

(A) Network layout of processes and molecules of interest. The 145 genes measured are 

represented as light gray squares and are grouped according to functional class. Relative 

positioning is maintained as in Fig. 2. (B) ΔΔCT values were superimposed on the map 

presented in (A) with the color and size scale presented for all 86 genes found to have a 

statistically significant treatment effect by ANOVA regardless of whether the post-hoc 

testing revealed significant changes at that time point. Small black points are included for 

positioning and represent the genes that do not undergo significant changes (NS). All ΔΔCT 

values were calculated relative to the mean expression in sacrifice-time matched control 

animals. Values of 1 and -1 represent a doubling and a halving of mRNA levels, 

respectively. The heavy black arrow indicates the progression of alcohol withdrawal from 

the chronic state through 48 hours of withdrawal at each of the 5 measured time points. Size 

changes are proportional to the absolute value of the changes. Positive values (red) indicate 

an increase in expression as compared to control animals whereas negative values (blue) 

indicate a decrease.
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Fig. 5. 
Correlated expression clusters discovered using the STEM algorithm for time series profile 

matching. (A) Schematic of the analysis pipeline used and the seven statistically significant 

gene clusters identified in the analysis. The black box surrounds the selected cluster, which 

is presented in more detail in panels B-D. Remaining statistically significant cluster 

assignments can be found in Supplemental Figures 2-7. (B) The expression profile for this 

cluster including Gabra1, Grin2a, Grin3a, Grik3, Prkcg, Ptpre, (p-value≤0.01). Values are 

the mean ΔΔCT values as compared to sacrifice-time matched control animals. Error bars 

represent 95% confidence intervals around the mean. Individual series are offset to ease 

visualization, but all measurements were taken at the time indicated. (C) A schematic 

network of the proposed regulatory network illustrating transcription factor binding sites 

shared among cluster members’ promoters from the 1000bp upstream of the transcription 

start site, as annotated by PAINT (white boxes). Yellow circles represent cluster member 

genes and connections indicate a predicted regulatory relationship. * indicates that the 

binding site is over-represented in the cluster in comparison to the 145 network. All other 

binding sites represent cluster enrichment in comparison to the genome. (D) Nested pie chart 

of cluster members showing significantly enriched annotation terms from the DAVID 

bioinformatics resource. The GO annotations of the 145 gene set were used as reference. 

Each ring is a single annotation term, indicated by the color noted in the legend along with 

fold enrichment score (FE) and the associated Fisher’s exact test p-value. All genes in the 

cluster with that GO annotation are colored in the nested pie chart.
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Fig. 6. 
Temporal changes in GABAA and NMDA receptor gene expression during the first 48h of 

alcohol withdrawal in the DVC. (A) The temporal expression of GABAA receptor subunits 

with statistically significant treatment effects (ANOVA p≤0.05) as ΔΔCT over time. (B) The 

temporal expression of NMDA receptor subunits with statistically significant treatment 

effects (ANOVA p≤0.05) as ΔΔCT over time. Grin2b appears in parentheses, indicating that 

the transcript did not show a statistically significant treatment effect via ANOVA though 

additional post-hoc treatment comparisons showed a difference between the chronic ethanol 

and 18 h measurements. It is included for completeness. C=control, E=chronic ethanol, 4, 8, 

18, 32, and 48 refer to the duration of withdrawal when measurements were made. Post-hoc 

Tukey’s treatment comparisons: * significant versus control (p≤0.05), t significant versus 

dependent (p≤0.05).
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