15 research outputs found
Galektin-3 in der Interaktion von T Zellen und Tumorzellen
Galektin-3 ist ein b-Galaktosid-bindendes Protein, das je nach Lokalisation unterschiedlichste Funktionen aufweist. Eine immunsuppressive Funktion von Galektin-3 wird im Kontext der Tumorimmunologie diskutiert. Im Rahmen dieser Arbeit wurde der Einfluss von Galektin-3 in der Interaktion von Tumorzellen mit T Zellen, insbesondere den für eine Immuntherapie interessanten gammadelta T Zellen, untersucht.
Insgesamt deuten die Ergebnisse dieser Arbeit darauf hin, dass Galektin-3 in der Tumorumgebung eine immunsuppressive Funktion besitzt. Die Ergebnisse legen allerdings nahe, dass die immunsuppressive Wirkung von Galektin-3 durch einen adoptiven Transfer in vitro expandierter Vgamma9Vdelta2 gammadelta T Zellen allein oder in Kombination mit bispezifischen Antikörpern überkommen werden könnte
Galectin-3 Released by Pancreatic Ductal Adenocarcinoma Suppresses γδ T Cell Proliferation but Not Their Cytotoxicity
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an immunosuppressive tumor microenvironment with a dense desmoplastic stroma. The expression of β-galactoside-binding protein galectin-3 is regarded as an intrinsic tumor escape mechanism for inhibition of tumor-infiltrating T cell function. In this study, we demonstrated that galectin-3 is expressed by PDAC and by γδ or αβ T cells but is only released in small amounts by either cell population. Interestingly, large amounts of galectin-3 were released during the co-culture of allogeneic in vitro expanded or allogeneic or autologous resting T cells with PDAC cells. By focusing on the co-culture of tumor cells and γδ T cells, we observed that knockdown of galectin-3 in tumor cells identified these cells as the source of secreted galectin-3. Galectin-3 released by tumor cells or addition of physiological concentrations of recombinant galectin-3 did neither further inhibit the impaired γδ T cell cytotoxicity against PDAC cells nor did it induce cell death of in vitro expanded γδ T cells. Initial proliferation of resting peripheral blood and tumor-infiltrating Vδ2-expressing γδ T cells was impaired by galectin-3 in a cell-cell-contact dependent manner. The interaction of galectin-3 with α3β1 integrin expressed by Vδ2 γδ T cells was involved in the inhibition of γδ T cell proliferation. The addition of bispecific antibodies targeting γδ T cells to PDAC cells enhanced their cytotoxic activity independent of the galectin-3 release. These results are of high relevance in the context of an in vivo application of bispecific antibodies which can enhance cytotoxic activity of γδ T cells against tumor cells but probably not their proliferation when galectin-3 is present. In contrast, adoptive transfer of in vitro expanded γδ T cells together with bispecific antibodies will enhance γδ T cell cytotoxicity and overcomes the immunosuppressive function of galectin-3
CAD-Based Feature Recognition for Process Monitoring Planning in Assembly
Process understanding and process monitoring are of great importance in production in order to control processes and guarantee a high quality. Demanding customer requirements with an increasing number of variants pose an even greater challenge to the quality of the processes, as this must be maintained at the highest level even in the event of process changes. In addition, new regulations and standards require process data to be recorded and stored, especially in manufacturing environments for medical and safety equipment (e.g., surgical instruments, camera systems in the automotive industry). Continuous variations in production processes and changes to products and the production system mean that the planning effort required to implement process monitoring has become vast. This is where automated planning and decision support systems become important. They are able to manage the complexity arising from alternative solutions and present suitable alternatives to the user. This article deals with the computer-aided identification of assembly features, which influence process monitoring and the generation of production system-neutral tasks for process monitoring. Computer-aided feature recognition methods were used to derive features from three-dimensional models. Furthermore, a skill-based approach was used to formulate tasks for process monitoring. This publication thus aims at the automated and product-specific generation of processes for process monitoring
Influence of Indoleamine-2,3-Dioxygenase and Its Metabolite Kynurenine on γδ T Cell Cytotoxicity against Ductal Pancreatic Adenocarcinoma Cells
Background: Pancreatic ductal adenocarcinoma (PDAC) is a malignant gastrointestinal disease. The enzyme indoleamine-2,3-dioxgenase (IDO) is often overexpressed in PDAC and its downstream metabolite kynurenine has been reported to inhibit T cell activation and proliferation. Since γδ T cells are of high interest for T cell-based immunotherapy against PDAC, we studied the impact of IDO and kynurenine on γδ T cell cytotoxicity against PDAC cells. Methods: IDO expression was determined in PDAC cells by flow cytometry and Western blot analysis. PDAC cells were cocultured with γδ T cells in medium or were stimulated with phosphorylated antigens or bispecific antibody in the presence or absence of IDO inhibitors. Additionally, γδ T cells were treated with recombinant kynurenine. Read-out assays included degranulation, cytotoxicity and cytokine measurement as well as cell cycle analysis. Results: Since IDO overexpression was variable in PDAC, IDO inhibitors improved γδ T cell cytotoxicity only against some but not all PDAC cells. γδ T cell degranulation and cytotoxicity were significantly decreased after their treatment with recombinant kynurenine. Conclusions: Bispecific antibody drastically enhanced γδ T cell cytotoxicity against all PDAC cells, which can be further enhanced by IDO inhibitors against several PDAC cells, suggesting a striking heterogeneity in PDAC escape mechanisms towards γδ T cell-mediated anti-tumor response
Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells
An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2)2xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2)2xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2)2xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2)2xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2)2xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2)2xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of refractory hematological malignancies is given by their HLA-independent killing and a reduced graft-versus-host disease
Fast, furious, and gassy: Etna's explosive eruption from the mantle
Highlights
• Magma in Etna's fall stratified eruption was extremely volatile-rich (9600 ppm CO2).
• Magma ascended from storage at the Moho to the surface in <1–5 days.
• High volatiles and fast ascent likely caused explosive intensity of this picritic magma.
Abstract
The 3930 BP Fall Stratified (FS) eruption at Mt. Etna is a rare example of a highly explosive eruption of primitive (picritic) magma directly from the mantle. The eruption produced ash plumes up to an estimated 20 km height, leading to a volcanic explosivity index (VEI) 4 (subplinian). Given its volatile-rich and primitive nature, the FS magma may have ascended rapidly from great depths to avoid fractionation and mixing within the extensive plumbing system beneath Etna. To determine the pressures from which the FS magma derived, we perform rehomogenization experiments on melt inclusions hosted in Fo90–91 olivines to resorb shrinkage bubbles and determine the initial H2O and CO2 in the melt. With measured CO2 concentrations of up to 9600 ppm, volatile solubility models yield magma storage pressures of 630–800 MPa. These correspond to depths of 24–30 km, which are comparable to the seismologically estimated Moho. Therefore, the magma's high CO2 concentration must come from carbon in the mantle (likely from subducted carbonates), as opposed to assimilation of shallow (<10 km) crustal carbonates.
Diffusion modeling of H2O and forsterite zonation profiles in clear, euhedral, and crystallographically oriented olivines indicates rapid ascent of magma directly from its source region to the surface. Forsterite profiles exhibit a narrow rim of growth zoning but no detectable diffusional zoning, reflecting maximum ascent times of 1–5 days. Eighteen measured H2O profiles result in remarkably uniform decompression rates of 0.47 MPa/s (95% confidence interval of 0.16–1.28 MPa/s), which is among the fastest measured for basaltic-intermediate magmas. These decompression rates indicate that the final stage of magma ascent over the region in which H2O degasses (between the surface and ∼ 15 km) occurred extremely fast at ∼ 17.5 m/s. This eruption may provide a link between primary magma composition and eruption intensity: we propose that the unusually explosive nature of this picritic eruption was driven by high H2O and CO2 concentrations, which led to continuously rapid ascent without stalling, all the way from the Moho
Image_1_Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells.tif
<p>An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2)<sub>2</sub>xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2)<sub>2</sub>xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2)<sub>2</sub>xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2)<sub>2</sub>xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2)<sub>2</sub>xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2)<sub>2</sub>xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of refractory hematological malignancies is given by their HLA-independent killing and a reduced graft-versus-host disease.</p
Image_4_Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells.tif
<p>An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2)<sub>2</sub>xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2)<sub>2</sub>xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2)<sub>2</sub>xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2)<sub>2</sub>xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2)<sub>2</sub>xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2)<sub>2</sub>xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of refractory hematological malignancies is given by their HLA-independent killing and a reduced graft-versus-host disease.</p
Image_2_Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells.tif
<p>An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2)<sub>2</sub>xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2)<sub>2</sub>xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2)<sub>2</sub>xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2)<sub>2</sub>xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2)<sub>2</sub>xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2)<sub>2</sub>xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of refractory hematological malignancies is given by their HLA-independent killing and a reduced graft-versus-host disease.</p
Image_3_Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells.tif
<p>An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2)<sub>2</sub>xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2)<sub>2</sub>xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2)<sub>2</sub>xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2)<sub>2</sub>xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2)<sub>2</sub>xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2)<sub>2</sub>xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of refractory hematological malignancies is given by their HLA-independent killing and a reduced graft-versus-host disease.</p