885 research outputs found

    Open Charm Enhancement in Pb+Pb Collisions at SPS

    Get PDF
    The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/\psi multiplicity in Pb+Pb collisions at 158 A GeV are used for the model prediction of the open charm yield. We find a strong enhancement of the open charm production, by a factor of about 2--4, over the standard hard-collision model extrapolation from nucleon-nucleon to nucleus-nucleus collisions. A possible mechanism of the open charm enhancement in A+A collisions at the SPS energies is proposed.Comment: 4 pages, Late

    Open and Hidden Charm Production in Heavy Ion Collisions at Ultrarelativistic Energies

    Get PDF
    We consider the production of the open charm and J/psi mesons in heavy ion collisions at BNL RHIC. We discuss several recently developed pictures for J/psi production and argue that a measurement at RHIC energies is crucial for disentangling these different descriptions.Comment: 19 pages, Latex, 5 PS-figures. v3: Fig.6 is adde

    The High E_T Drop of J/psi to Drell-Yan Ratio from the Statistical c anti-c Coalescence Model

    Full text link
    The dependence of the J/psi yield on the transverse energy E_T in heavy ion collisions is considered within the statistical c anti-c coalescence model. The model fits the NA50 data for Pb+Pb collisions at the CERN SPS even in the high-E_T region (E_T > 100 GeV). Here E_T-fluctuations and E_T-losses in the dimuon event sample naturally create the celebrated drop in the J/psi to Drell-Yan ratio.Comment: 14 pages, REVTeX, 1 PS-figure. v2: References are corrected and update

    Elliptical flow -- a signature for early pressure in ultrarelativistic nucleus-nucleus collisions

    Get PDF
    Elliptical energy flow patterns in non-central Au(11.7AGeV) on Au reactions have been studied employing the RQMD model. The strength of these azimuthal asymmetries is calculated comparing the results in two different modes of RQMD (mean field and cascade). It is found that the elliptical flow which is readily observable with current experimental detectors may help to distinguish different reasonable expansion scenarios for baryon-dense matter. The final asymmetries are very sensitive to the pressure at maximum compression, because they involve a partial cancelation between early squeeze-out and subsequent flow in the reaction plane. This cancelation can be expected to occur in a broad energy region covered by the current heavy ion fixed-target programs at BNL and at CERN.Comment: 14 pages LaTeX including 3 postscript figure

    Direct observation of homogeneous cavitation in nanopores

    Full text link
    We report on the evaporation of hexane from porous alumina and silicon membranes. These membranes contain billions of independent nanopores tailored to an ink-bottle shape, where a cavity several tens of nanometers in diameter is separated from the bulk vapor by a constriction. For alumina membranes with narrow enough constrictions, we demonstrate that cavity evaporation proceeds by cavitation. Measurements of the pressure dependence of the cavitation rate follow the predictions of the bulk, homogeneous, classical nucleation theory, definitively establishing the relevance of homogeneous cavitation as an evaporation mechanism in mesoporous materials. Our results imply that porous alumina membranes are a promising new system to study liquids in a deeply metastable state.Comment: 14 pages , 4 figures. Source files also contain Supplemental Material (Doebele_HomogeneousCavitationMembranes_SM.pdf

    Photon Rates for Heavy-Ion Collisions from Hidden Local Symmetry

    Get PDF
    We study photon production from the hidden local symmetry approach that includes pions, rho and a1 mesons and compute the corresponding photon emission rates from a hadronic gas in thermal equilibrium. Together with experimental radiative decay widths of the background, these rates are used in a relativistic transport model to calculate single photon spectra in heavy-ion collisions at SPS energies. We then employ this effective theory to test three scenarios for the chiral phase transition in high-temperature nuclear matter including decreasing vector meson masses. Although all calculations respect the upper bound set by the WA80 Collaboration, we find the scenarios could be distinguished with more detailed data.Comment: 12 pages, 12 Postscript figures; discussion of thermal equilibrium rates expanded, minor corrections to text and graph

    A QCD space-time analysis of quarkonium formation and evolution in hadronic collisions

    Get PDF
    The production of heavy quarkonium as QQbar bound-states in hadron-hadron collisions is considered within the framework of a space-time description, combining parton-cascade evolution with a coalescence model for bound-state formation. The `hard' production of the initial QQbar, directly or via gluon fragmentation and including both color-singlet and color-octet contributions, is calculated from the PQCD cross-sections. The subsequent development of the QQbar system is described within a space-time generalization of the DGLAP parton-evolution formalism in position- and momentum-space. The actual formation of the bound-states is accomplished through overlap of the QQbar pair and a spectrum of quarkonium wave-functions. This coalescence can only occur after sufficent gluon radiation reduces the QQbar relative velocity to a value commensurate with the non-relativistic kinematics of these bound systems. The presence of gluon participants in the cascade then is both necessary and leads to the natural inclusion of both color-singlet and color-octet mechanisms. The application of this approach to pp (ppbar) collisions from sqrt(s)= 30 GeV - 14 TeV reveals very decent agreement with available data from ISR and Tevatron - without the necessity of introducing fit parameters. Moreover, production probabilities are calculated for a complete spectrum of charmonium and bottonium states, with the relative significance compared to open charm (bottom) production. An analysis of the space-time development is carried through which sheds light on the relevance of gluon radiation and color-structure, suggesting a correponding experimental investigation.Comment: 37 pages including 16 postscript figure

    Charged particle production in the Pb+Pb system at 158 GeV/c per nucleon

    Get PDF
    Charged particle multiplicities from high multiplicity central interactions of 158 GeV/nucleon Pb ions with Pb target nuclei have been measured in the central and far forward projectile spectator regions using emulsion chambers. Multiplicities are significantly lower than predicted by Monte Carlo simulations. We examine the shape of the pseudorapidity distribution and its dependence on centrality in detail.Comment: 17 pages text plus 12 figures in postscript 12/23/99 -- Add TeX version of sourc
    corecore