17,355 research outputs found
Quantifying and Transferring Contextual Information in Object Detection
(c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other work
Recommended from our members
Study of quasi-distributed optical fiber methane sensors based on laser absorption spectrometry
The coal industry plays an important role in the economic development of China. With the increase of coal mining year by year, coal mine accidents caused by gas explosion also occur frequently, which poses a serious threat to the life safety of absenteeism and national property safety. Therefore, high-precision methane fiber sensor is of great significance to ensure coal mine safety. This paper mainly introduces two kinds of quasi-distributed gas optical fiber sensing systems based on laser absorption spectroscopy. The gas fiber optic sensor based on absorption spectrum has high measurement accuracy, fast response and long service life. One is quasi-distributed optical fiber sensing system based on spatial division multiplexing (SDM) technology and the other is quasi-distributed optical fiber sensing system based on optical time domain reflection and time division multiplexing(TDM) technology
The Legitimacy of Extralegal Property: Global Perspectives and China’s Experience
Binary thinking has been entrenched in property law, posing challenges to the protection of
land tenure and land users who have no title to the land they cultivate. This paper critiques
the state law centred approach to evaluating the legitimacy of property and defends extralegal
property, as legitimate claims to land and related natural resources that are not against the
law, but that are not recognised by the law as formal property rights. It begins with an
overview of how the legitimacy of property is conceived of at the global level, drawing upon
several conceptual frameworks of property developed via global initiatives and soft law
instruments. That being done, it moves to examine the legitimacy of extralegal property from
the local perspective, looking at a case study of ‘minor rights property’ in China. It is argued
that long-term usage of land supported by the prevalence of this practice and social consensus
should be regarded as one of the major sources of the legitimacy of property. The paper
concludes that the state law centred approach to evaluating the legitimacy of property
overlooks a range of legitimate property claims and the plurality of norms governing property
relations. In order to recognise the full spectrum of property, we should link global
perspectives with local experiences
Re-identification by Relative Distance Comparison
Abstract—Matching people across nonoverlapping camera views at different locations and different times, known as person reidentification, is both a hard and important problem for associating behavior of people observed in a large distributed space over a prolonged period of time. Person reidentification is fundamentally challenging because of the large visual appearance changes caused by variations in view angle, lighting, background clutter, and occlusion. To address these challenges, most previous approaches aim to model and extract distinctive and reliable visual features. However, seeking an optimal and robust similarity measure that quantifies a wide range of features against realistic viewing conditions from a distance is still an open and unsolved problem for person reidentification. In this paper, we formulate person reidentification as a relative distance comparison (RDC) learning problem in order to learn the optimal similarity measure between a pair of person images. This approach avoids treating all features indiscriminately and does not assume the existence of some universally distinctive and reliable features. To that end, a novel relative distance comparison model is introduced. The model is formulated to maximize the likelihood of a pair of true matches having a relatively smaller distance than that of a wrong match pair in a soft discriminant manner. Moreover, in order to maintain the tractability of the model in large scale learning, we further develop an ensemble RDC model. Extensive experiments on three publicly available benchmarking datasets are carried out to demonstrate the clear superiority of the proposed RDC models over related popular person reidentification techniques. The results also show that the new RDC models are more robust against visual appearance changes and less susceptible to model overfitting compared to other related existing models. Index Terms—Person reidentification, feature quantification, feature selection, relative distance comparison Ç
Photon Momentum Transfer in Single-Photon Double Ionization of Helium
We theoretically and experimentally investigate the photon momentum transfer in single-photon double ionization of helium at various large photon energies. We find that the forward shifts of the momenta along the light propagation of the two photoelectrons are roughly proportional to their fraction of the excess energy. The mean value of the forward momentum is about 8/5 of the electron energy divided by the speed of light. This holds for fast and slow electrons despite the fact that the energy sharing is highly asymmetric and the slow electron is known to be ejected by secondary processes of shake off and knockout rather than directly taking its energy from the photon. The biggest deviations from this rule are found for the region of equal energy sharing where the quasifree mechanism dominates double ionization
Holographic dark energy model with non-minimal coupling
We find that holographic dark energy model with non-minimally coupled scalar
field gives rise to an accelerating universe by choosing Hubble scale as IR
cutoff. We show viable range of a non-minimal coupling parameter in the
framework of this model.Comment: 7 pages, no figure, corrected some typos, to be published in
Europhys. Let
A Lattice Study of Quark and Glue Momenta and Angular Momenta in the Nucleon
We report a complete calculation of the quark and glue momenta and angular
momenta in the proton. These include the quark contributions from both the
connected and disconnected insertions. The quark disconnected insertion loops
are computed with noise, and the signal-to-noise is improved with
unbiased subtractions. The glue operator is comprised of gauge-field tensors
constructed from the overlap operator. The calculation is carried out on a
quenched lattice at for Wilson fermions with
, and which correspond to pion masses at , and ~MeV, respectively. The chirally extrapolated and quark
momentum/angular momentum fraction is found to be , the
strange momentum/angular momentum fraction is , and that of
the glue is . The previous study of quark spin on the same
lattice revealed that it carries a fraction of of proton spin. The
orbital angular momenta of the quarks are then obtained from subtracting the
spin from their corresponding angular momentum components. We find that the
quark orbital angular momentum constitutes of the proton spin with
almost all of it coming from the disconnected insertions.Comment: Renormalization section is expanded to include more details. There
are slight changes in the final numbers. A few modification and corrections
are made in the rest of the tex
The influence of hydrogen on plasticity in pure iron-theory and experiment
Tensile stress relaxation is combined with transmission electron microscopy
to reveal dramatic changes in dislocation structure and sub structure in pure
alpha iron as a result of the effects of dissolved hydrogen. We find that
hydrogen charged specimens after plastic deformation display a very
characteristic pattern of trailing dipoles and prismatic loops which are absent
in uncharged pure metal. We explain these observations by use of a new self
consistent kinetic Monte Carlo model, which in fact was initially used to
predict the now observed microstructure. The results of this combined theory
and experimental study is to shed light on the fundamental mechanism of
hydrogen enhanced localised plasticity
- …