17,355 research outputs found

    Quantifying and Transferring Contextual Information in Object Detection

    Get PDF
    (c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other work

    The Legitimacy of Extralegal Property: Global Perspectives and China’s Experience

    Get PDF
    Binary thinking has been entrenched in property law, posing challenges to the protection of land tenure and land users who have no title to the land they cultivate. This paper critiques the state law centred approach to evaluating the legitimacy of property and defends extralegal property, as legitimate claims to land and related natural resources that are not against the law, but that are not recognised by the law as formal property rights. It begins with an overview of how the legitimacy of property is conceived of at the global level, drawing upon several conceptual frameworks of property developed via global initiatives and soft law instruments. That being done, it moves to examine the legitimacy of extralegal property from the local perspective, looking at a case study of ‘minor rights property’ in China. It is argued that long-term usage of land supported by the prevalence of this practice and social consensus should be regarded as one of the major sources of the legitimacy of property. The paper concludes that the state law centred approach to evaluating the legitimacy of property overlooks a range of legitimate property claims and the plurality of norms governing property relations. In order to recognise the full spectrum of property, we should link global perspectives with local experiences

    Re-identification by Relative Distance Comparison

    Get PDF
    Abstract—Matching people across nonoverlapping camera views at different locations and different times, known as person reidentification, is both a hard and important problem for associating behavior of people observed in a large distributed space over a prolonged period of time. Person reidentification is fundamentally challenging because of the large visual appearance changes caused by variations in view angle, lighting, background clutter, and occlusion. To address these challenges, most previous approaches aim to model and extract distinctive and reliable visual features. However, seeking an optimal and robust similarity measure that quantifies a wide range of features against realistic viewing conditions from a distance is still an open and unsolved problem for person reidentification. In this paper, we formulate person reidentification as a relative distance comparison (RDC) learning problem in order to learn the optimal similarity measure between a pair of person images. This approach avoids treating all features indiscriminately and does not assume the existence of some universally distinctive and reliable features. To that end, a novel relative distance comparison model is introduced. The model is formulated to maximize the likelihood of a pair of true matches having a relatively smaller distance than that of a wrong match pair in a soft discriminant manner. Moreover, in order to maintain the tractability of the model in large scale learning, we further develop an ensemble RDC model. Extensive experiments on three publicly available benchmarking datasets are carried out to demonstrate the clear superiority of the proposed RDC models over related popular person reidentification techniques. The results also show that the new RDC models are more robust against visual appearance changes and less susceptible to model overfitting compared to other related existing models. Index Terms—Person reidentification, feature quantification, feature selection, relative distance comparison Ç

    Photon Momentum Transfer in Single-Photon Double Ionization of Helium

    No full text
    We theoretically and experimentally investigate the photon momentum transfer in single-photon double ionization of helium at various large photon energies. We find that the forward shifts of the momenta along the light propagation of the two photoelectrons are roughly proportional to their fraction of the excess energy. The mean value of the forward momentum is about 8/5 of the electron energy divided by the speed of light. This holds for fast and slow electrons despite the fact that the energy sharing is highly asymmetric and the slow electron is known to be ejected by secondary processes of shake off and knockout rather than directly taking its energy from the photon. The biggest deviations from this rule are found for the region of equal energy sharing where the quasifree mechanism dominates double ionization

    Holographic dark energy model with non-minimal coupling

    Full text link
    We find that holographic dark energy model with non-minimally coupled scalar field gives rise to an accelerating universe by choosing Hubble scale as IR cutoff. We show viable range of a non-minimal coupling parameter in the framework of this model.Comment: 7 pages, no figure, corrected some typos, to be published in Europhys. Let

    A Lattice Study of Quark and Glue Momenta and Angular Momenta in the Nucleon

    Get PDF
    We report a complete calculation of the quark and glue momenta and angular momenta in the proton. These include the quark contributions from both the connected and disconnected insertions. The quark disconnected insertion loops are computed with Z4Z_4 noise, and the signal-to-noise is improved with unbiased subtractions. The glue operator is comprised of gauge-field tensors constructed from the overlap operator. The calculation is carried out on a 163×2416^3 \times 24 quenched lattice at β=6.0\beta = 6.0 for Wilson fermions with κ=0.154,0.155\kappa=0.154, 0.155, and 0.15550.1555 which correspond to pion masses at 650,538650, 538, and 478478~MeV, respectively. The chirally extrapolated uu and dd quark momentum/angular momentum fraction is found to be 0.64(5)/0.70(5)0.64(5)/0.70(5), the strange momentum/angular momentum fraction is 0.024(6)/0.023(7)0.024(6)/0.023(7), and that of the glue is 0.33(6)/0.28(8)0.33(6)/0.28(8). The previous study of quark spin on the same lattice revealed that it carries a fraction of 0.25(12)0.25(12) of proton spin. The orbital angular momenta of the quarks are then obtained from subtracting the spin from their corresponding angular momentum components. We find that the quark orbital angular momentum constitutes 0.47(13)0.47(13) of the proton spin with almost all of it coming from the disconnected insertions.Comment: Renormalization section is expanded to include more details. There are slight changes in the final numbers. A few modification and corrections are made in the rest of the tex

    The influence of hydrogen on plasticity in pure iron-theory and experiment

    Full text link
    Tensile stress relaxation is combined with transmission electron microscopy to reveal dramatic changes in dislocation structure and sub structure in pure alpha iron as a result of the effects of dissolved hydrogen. We find that hydrogen charged specimens after plastic deformation display a very characteristic pattern of trailing dipoles and prismatic loops which are absent in uncharged pure metal. We explain these observations by use of a new self consistent kinetic Monte Carlo model, which in fact was initially used to predict the now observed microstructure. The results of this combined theory and experimental study is to shed light on the fundamental mechanism of hydrogen enhanced localised plasticity
    • …
    corecore