325 research outputs found

    Design and Control of the McKibben Artificial Muscles Actuated Humanoid Manipulator

    Get PDF
    The McKibben Pneumatic Artificial Muscles (PAMs) are expected to endow the advanced robots with the ability of coexisting and cooperating with humans. However, the application of PAMs is still severely hindered by some critical issues. Focusing on the bionic design issue, this chapter in detail presents the design of a 7-degree-of-freedom (DOF) human-arm-like manipulator. It takes the antagonized PAMs and Bowden cables to mimic the muscle-tendon-ligament structure of human arm by elaborately configuring the DOFs and flexibly deploying the routing of Bowden cables; as a result, the DOFs of the analog shoulder, elbow, and wrist of the robotic arm intersect at a point respectively and the motion of these DOFs is independent from each other for convenience of human-like motion. The model imprecision caused by the strong nonlinearity is universally acknowledged as a main drawback of the PAM systems. Focusing on this issue, this chapter views the model imprecision as an internal disturbance, and presents an approach that observe these disturbances with extended-state-observer (ESO) and compensate them with full-order-sliding-mode-controller (fSMC), via experiments validated the human-like motion performance with expected robustness and tracking accuracy. Finally, some variants of PAMs for remedying the drawbacks of the PAM systems are discussed

    Reliability-Oriented Optimization of the LC Filter Design of a Buck DC-DC Converter

    Get PDF

    Optical sensors using chaotic correlation fiber loop ring down

    Get PDF
    We have proposed a novel optical sensor scheme based on chaotic correlation fiber loop ring down (CCFLRD). In contrast to the well-known FLRD spectroscopy, where pulsed laser is injected to fiber loop and ring down time is measured, the proposed CCFLRD uses a chaotic laser to drive a fiber loop and measures autocorrelation coefficient ring down time of chaotic laser. The fundamental difference enables us to avoid using long fiber loop as required in pulsed FLRD, and thus generates higher sensitivity. A strain sensor has been developed to validate the CCFLRD concept. Theoretical and experiment results demonstrate that the proposed method is able to enhance sensitivity by more than two orders of magnitude comparing to the existing FLRD method. We believe the proposed method could find great potential applications for chemical, medical, and physical sensing

    A qualitative study of how self-harm starts and continues among Chinese adolescents

    Get PDF
    Background It is essential to investigate the experiences behind why adolescents start and continue to self-harm in order to develop targeted treatment and prevent future self-harming behaviours. Aims The aims of this study are to understand the motivations for initiating and repeating nonfatal self-harm, the different methods used between first-time and repeated self-harm and the reasons that adolescents do not seek help from health services. Methods Adolescents with repeated nonfatal self-harm experiences were recruited to participate in individual, semi-structured qualitative interviews. The interviews were analysed with interpretative phenomenological analysis. Results We found that nonfatal self-harm among adolescents occurred comparatively early and was often triggered by specific reasons. However, the subsequent nonfatal self-harm could be causeless, with repeated self-harm becoming a maladaptive coping strategy to handle daily pressure and negative emotions. The choice of tools used was related to the ease of accessibility, the life-threatening risk and the size of the scars. Adolescents often concealed their scars on purpose, which made early identification insufficient. Peer influence, such as online chat groups encouraging self-harm by discussing and sharing self-harm pictures, could also lead to increased self-harm. The results also included participants’ opinions on how to stop nonfatal self-harm and their dissatisfaction with the current healthcare services. Conclusions The current study provides important implications both for early identification and interventions for adolescents who engage in repeated nonfatal self-harm, and for individualising treatment planning that benefits them. It is also worthwhile to further investigate how peer influence and social media may affect self-harm in adolescents

    SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nanometer silicon dioxide (nano-SiO<sub>2</sub>) has a wide variety of applications in material sciences, engineering and medicine; however, the potential cell biological and proteomic effects of nano-SiO<sub>2 </sub>exposure and the toxic mechanisms remain far from clear.</p> <p>Results</p> <p>Here, we evaluated the effects of amorphous nano-SiO<sub>2 </sub>(15-nm, 30-nm SiO<sub>2</sub>). on cellular viability, cell cycle, apoptosis and protein expression in HaCaT cells by using biochemical and morphological analysis, two-dimensional differential gel electrophoresis (2D-DIGE) as well as mass spectrometry (MS). We found that the cellular viability of HaCaT cells was significantly decreased in a dose-dependent manner after the treatment of nano-SiO<sub>2 </sub>and micro-sized SiO<sub>2 </sub>particles. The IC<sub>50 </sub>value (50% concentration of inhibition) was associated with the size of SiO<sub>2 </sub>particles. Exposure to nano-SiO<sub>2 </sub>and micro-sized SiO<sub>2 </sub>particles also induced apoptosis in HaCaT cells in a dose-dependent manner. Furthermore, the smaller SiO<sub>2 </sub>particle size was, the higher apoptotic rate the cells underwent. The proteomic analysis revealed that 16 differentially expressed proteins were induced by SiO<sub>2 </sub>exposure, and that the expression levels of the differentially expressed proteins were associated with the particle size. The 16 proteins were identified by MALDI-TOF-TOF-MS analysis and could be classified into 5 categories according to their functions. They include oxidative stress-associated proteins; cytoskeleton-associated proteins; molecular chaperones; energy metabolism-associated proteins; apoptosis and tumor-associated proteins.</p> <p>Conclusions</p> <p>These results showed that nano-SiO<sub>2 </sub>exposure exerted toxic effects and altered protein expression in HaCaT cells. The data indicated the alterations of the proteins, such as the proteins associated with oxidative stress and apoptosis, could be involved in the toxic mechanisms of nano-SiO<sub>2 </sub>exposure.</p
    • …
    corecore