13 research outputs found

    Splice Isoforms of the Polyglutamine Disease Protein Ataxin-3 Exhibit Similar Enzymatic yet Different Aggregation Properties

    Get PDF
    Protein context clearly influences neurotoxicity in polyglutamine diseases, but the contribution of alternative splicing to this phenomenon has rarely been investigated. Ataxin-3, a deubiquitinating enzyme and the disease protein in SCA3, is alternatively spliced to encode either a C-terminal hydrophobic stretch or a third ubiquitin interacting motif (termed 2UIM and 3UIM isoforms, respectively). In light of emerging insights into ataxin-3 function, we examined the significance of this splice variation. We confirmed neural expression of several minor 5′ variants and both of the known 3′ ataxin-3 splice variants. Regardless of polyglutamine expansion, 3UIM ataxin-3 is the predominant isoform in brain. Although 2UIM and 3UIM ataxin-3 display similar in vitro deubiquitinating activity, 2UIM ataxin-3 is more prone to aggregate and more rapidly degraded by the proteasome. Our data demonstrate how alternative splicing of sequences distinct from the trinucleotide repeat can alter properties of the encoded polyglutamine disease protein and thereby perhaps contribute to selective neurotoxicity

    mRNA-mRNA duplexes that autoelicit Staufen1-mediated mRNA decay

    No full text
    We report a new mechanism by which human mRNAs crosstalk: an Alu element in the 3'-untranslated region (3' UTR) of one mRNA can base-pair with a partially complementary Alu element in the 3' UTR of a different mRNA thereby creating a Staufen1 (STAU1)-binding site (SBS). STAU1 binding to a 3' UTR SBS was previously shown to trigger STAU1-mediated mRNA decay (SMD) by directly recruiting the ATP-dependent RNA helicase UPF1, which is also a key factor in the mechanistically related nonsense-mediated mRNA decay (NMD) pathway. In the case of a 3' UTR SBS created via mRNA–mRNA base-pairing, we show that SMD targets both mRNAs in the duplex provided that both mRNAs are translated. If only one mRNA is translated, then it alone is targeted for SMD. We demonstrate the importance of mRNA–mRNA-triggered SMD to the processes of cell migration and invasion

    mRNA–mRNA duplexes that autoelicit Staufen1-mediated mRNA decay

    No full text
    We report a new mechanism by which human mRNAs crosstalk: an Alu element in the 3'-untranslated region (3' UTR) of one mRNA can base-pair with a partially complementary Alu element in the 3' UTR of a different mRNA thereby creating a Staufen1 (STAU1)-binding site (SBS). STAU1 binding to a 3' UTR SBS was previously shown to trigger STAU1-mediated mRNA decay (SMD) by directly recruiting the ATP-dependent RNA helicase UPF1, which is also a key factor in the mechanistically related nonsense-mediated mRNA decay (NMD) pathway. In the case of a 3' UTR SBS created via mRNA–mRNA base-pairing, we show that SMD targets both mRNAs in the duplex provided that both mRNAs are translated. If only one mRNA is translated, then it alone is targeted for SMD. We demonstrate the importance of mRNA–mRNA-triggered SMD to the processes of cell migration and invasion

    mRNA cap binding proteins: effects on abscisic acid signal transduction, mRNA processing, and microarray analyses.

    No full text
    International audienceThe plant hormone abscisic acid (ABA) intricately regulates a multitude of processes during plant growth and development. Recent studies have established a connection between genes participating in various steps of cellular RNA metabolism and the ABA signal transduction machinery. In this chapter we focus on the plant nuclear mRNA cap binding proteins, CBP20 and CBP80. We summarize and report recent findings on their effects on cellular signal transduction networks and mRNA processing events. ABA hypersensitive 1 (abh1) harbors a gene disruption in the Arabidopsis CBP80 gene. Loss-of-function mutation of ABH1 can also result in an early flowering phenotype in the Arabidopsis accession C24. abh1 revealed noncoding cis-natural antisense transcripts (cis-NATs) at the CONSTANS locus in wild-type plants with elevated cis-NAT expression in the mutant. abh1 also revealed an influence on the splicing of the MADS box transcription factor Flowering Locus C pre-mRNA, which may result in the regulation of flowering time. Furthermore, new experiments analyzing complementation of cpb20 with site-directed cpb20 mutants provide evidence that the CAP binding activity of CBP20 is essential for the observed cbp-associated phenotypes. In conclusion, mutants in genes participating in RNA processing provide excellent tools to uncover novel molecular mechanisms for the regulation of RNA metabolism and of signal transduction networks in wild-type plants

    Nonsense-Mediated mRNA decay in development, stress and cancer

    No full text
    Nonsense-mediated mRNA decay (NMD) is a well characterized eukaryotic mRNA degradation pathway, responsible for the identification and degradation of transcripts harboring translation termination codons in premature contexts. Transcriptome-wide studies revealed that NMD is not only an mRNA surveillance pathway as initially thought, but is also a post-transcriptional regulatory mechanism of gene expression, as it fine-tunes the transcript levels of many wild-type genes. Hence, NMD contributes to the regulation of many essential biological processes, including pathophysiological mechanisms. In this chapter we discuss the importance of NMD and of its regulation to organism development and its link to the cellular stress responses, like the unfolded protein response (UPR) and the integrated stress response (ISR). Additionally, we describe how tumor cells have explored both NMD functions to promote tumorigenesis. Using published data and databases, we have also performed a network-based approach that further supports the link between NMD and these (patho) physiological processes.This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT; Portugal) (PTFC/BIM-MEC/3749/2014 to LR and UID/ MULTI/04046/2013 Research Unit grant to BioISI), and by National Institute of Health Dr. Ricardo Jorge. RF is recipient of a fellowship from BioSys PhD programme (SFRH/BD/114392/2016) from FCT (Portugal). GN is recipient of a fellowship from BioSys PhD programme (PD/BD/130959/2017) from FCT (Portugal). PJC is recipient of a fellowship from BioSys PhD programme (PD/BD/52495/2014) from FCT (Portugal).info:eu-repo/semantics/publishedVersio

    Nonsense-mediated RNA decay in the brain: emerging modulator of neural development and disease

    No full text
    Steady-state RNA levels are controlled by the balance between RNA synthesis and RNA turnover. A selective RNA turnover mechanism that has received recent attention in neurons is nonsense-mediated RNA decay (NMD). NMD has been shown to influence neural development, neural stem cell differentiation decisions, axon guidance and synaptic plasticity. In humans, NMD factor gene mutations cause some forms of intellectual disability and are associated with neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Impairments in NMD are linked to neurodegenerative disorders, including amyotrophic lateral sclerosis. We discuss these findings, their clinical implications and challenges for the future
    corecore