20 research outputs found

    Integrated transcriptomic and metabolomic data reveal the cold stress responses molecular mechanisms of two coconut varieties

    Get PDF
    Among tropical fruit trees, coconut holds significant edible and economic importance. The natural growth of coconuts faces a challenge in the form of low temperatures, which is a crucial factor among adverse environmental stresses impacting their geographical distribution. Hence, it is essential to enhance our comprehension of the molecular mechanisms through which cold stress influences various coconut varieties. We employed analyses of leaf growth morphology and physiological traits to examine how coconuts respond to low temperatures over 2-hour, 8-hour, 2-day, and 7-day intervals. Additionally, we performed transcriptome and metabolome analyses to identify the molecular and physiological shifts in two coconut varieties displaying distinct sensitivities to the cold stress. As the length of cold stress extended, there was a prominent escalation within the soluble protein (SP), proline (Pro) concentrations, the activity of peroxidase (POD) and superoxide dismutase (SOD) in the leaves. Contrariwise, the activity of glutathione peroxidase (GSH) underwent a substantial reduction during this period. The widespread analysis of metabolome and transcriptome disclosed a nexus of genes and metabolites intricately cold stress were chiefly involved in pathways centered around amino acid, flavonoid, carbohydrate and lipid metabolism. We perceived several stress-responsive metabolites, such as flavonoids, carbohydrates, lipids, and amino acids, which unveiled considerably, lower in the genotype subtle to cold stress. Furthermore, we uncovered pivotal genes in the amino acid biosynthesis, antioxidant system and flavonoid biosynthesis pathway that presented down-regulation in coconut varieties sensitive to cold stress. This study broadly enriches our contemporary perception of the molecular machinery that contributes to altering levels of cold stress tolerance amid coconut genotypes. It also unlocks several unique prospects for exploration in the areas of breeding or engineering, aiming to identifying tolerant and/or sensitive coconut varieties encompassing multi-omics layers in response to cold stress conditions

    Circular RNA F-circEA-2a derived from EML4-ALK fusion gene promotes cell migration and invasion in non-small cell lung cancer

    No full text
    Abstract Oncogenic fusion gene Echinoderm Microtubule-associated protein-Like 4-Anaplastic Lymphoma Kinase (EML4-ALK) contributes to tumorigenesis of a subset of non-small cell lung cancer (NSCLC). Recently, we demonstrated that F-circEA-4a, a tumor-promoting circular RNA (circRNA) generated from the back-splicing of EML4-ALK variant 3b (v3b), is a novel liquid biopsy biomarker for NSCLC. However, circRNAs produced from EML4-ALK gene and their roles in NSCLC are not well-characterized. Here, we identify another EML4-ALK-v3b-derived circRNA, F-circEA-2a, harboring “AA” (rather than “AAAA” in F-circEA-4a) motif at the junction site. F-circEA-2a mainly locates in the cytoplasm and promotes cell migration and invasion, but has little effect on cell proliferation. Moreover, F-circEA-2a exists in tumor, but not in the plasma of NSCLC patients with EML4-ALK fusion gene, further supporting the significant diagnostic value of F-circEA-4a for EML4-ALK-positive NSCLC. This work finds a novel oncogenic circRNA generated from EML4-ALK fusion gene, highlighting the pivotal role of circRNA in EML4-ALK-positive NSCLC development

    Jasmonate-Elicited Stress Induces Metabolic Change in the Leaves of Leucaena leucocephala

    No full text
    The plant Leucaena leucocephala was exposed to four jasmonate elicitors, i.e., jasmonic acid (JA), methyl jasmonic acid (MeJA), jasmonoyl-l-isoleucine (JA-Ile) and 6-ethyl indanoyl glycine conjugate (2-[(6-ethyl-1-oxo-indane-4-carbonyl)-amino]-acetic acid methyl ester) (CGM). The treatment was to mimic the herbivores and wounding stresses. By using NMR spectroscopy along with chemometric analysis, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), the changes of metabolites in the leaves of L. leucocephala were determined under the stress as induced by the four elicitors. The challenge of JA-Ile caused an accumulation of lactic acid (6), β-glucose (10), alanine (12), threonine (13), steroids (18), 3,4-dihydroxypyridine (19) and an unidentified compound 20. The chemometric analysis of the PCA and PLS-DA models indicated that the alternation of metabolites triggered by JA, MeJA, and CGM treatments were very minimum. In contrast, the treatment by JA-Ile could induce the most significant metabolic changes in the leaves. Moreover, there was very minimal new metabolite being detected in responding to the jasmonate-induced stresses. The results showed some metabolite concentrations changed after application of the elicitors, which may be related to a high level of tolerance to stress conditions as well as the strong ecological suitability of L. leucocephala

    Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis

    No full text
    Abstract tRNA-derived small RNA (tsRNA) is a novel regulatory small non-coding RNA and participates in diverse physiological and pathological processes. However, the presence of tsRNAs in exosome and their diagnostic potential remain unclear. In this study, we took advantage of small RNA-seq technology to profile exosomal tsRNAs from cell culture medium and plasma, and found ubiquitous presence of tsRNAs in exosome. To explore the potential value of tsRNA for cancer diagnosis, we compared exosomal tsRNA levels between liver cancer patients and healthy donors, revealing that tsRNAs were dramatically increased in plasma exosomes of liver cancer patients. Importantly, patients with liver cancer exhibited significantly higher levels of four tsRNAs (tRNA-ValTAC-3, tRNA-GlyTCC-5, tRNA-ValAAC-5 and tRNA-GluCTC-5) in plasma exosome, demonstrating that plasma exosomal tsRNA could serve as a novel diagnostic biomarker. Taken together, our results not only expand non-coding RNA species in exosome, but also highlight the potential of tsRNAs as a promising biomarker for cancer diagnosis

    Early Infant Human Immunodeficiency Virus Type 1 Detection Suitable for Resource-Limited Settings with Multiple Circulating Subtypes by Use of Nested Three-Monoplex DNA PCR and Dried Blood Spotsâ–ż

    No full text
    The early detection of human immunodeficiency virus type 1 (HIV-1) infection in infants is complicated by the persistence of maternal antibodies and by diverse HIV-1 subtypes. We developed a nested, three-monoplex HIV-1 DNA PCR (N3M-PCR) assay to detect diverse HIV-1 subtypes in infants born to infected mothers. We optimized the test for use with dried blood spot (DBS) samples for ease of storage and transport from rural China to central laboratories. Six pairs of primers were designed that targeted env, gag, and pol genes, and the test was run in three reactions with an analytical sensitivity of 10 copies DNA per reaction to cover nine HIV-1 subtypes, A, B, C, D, F, G, CRF01-AE, CRF08-BC, and CRF07-BC. The assay performance was evaluated on 347 DBS specimens from 151 exposed infants in four diverse provinces of China in which multiple subtypes were circulating. The results of this test were compared to those of HIV antibody enzyme immunoassay and Western blotting confirmation for the infants at ≥18 months of age or to convincing clinical and epidemiologic data for deceased infants. The sensitivity of the N3M-PCR assay was 30.0% (3/10) for infants at 48 h after birth, 91.7% (11/12) at 1 to 2 months of age, and 93.7% (15/16) at 3 to 6 months of age. The specificity was 100% (94/94) at all three time points. The PCR reproducibility in the three DNA regions was 100% for samples at 48 h after birth, 96.7% at 1 to 2 months, and 100% at 3 to 6 months of age. The HIV-1 DNA N3M-PCR assay on DBSs offers a simple and affordable approach for early infant HIV-1 diagnosis in regions with diverse HIV-1 circulating subtypes
    corecore