1,321 research outputs found

    Statin therapy for elderly patients should be assessed for each individual

    Get PDF
    A critical appraisal and clinical application of Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002;360(9346):1623-30. doi:10.1016/S0140-6736(02)11600-

    A Thermodynamic Investigation of the Redox Properties of Ceria-Titania Mixed Oxides

    Get PDF
    Ceria-titania solutions with compositions of Ce0.9Ti0.1O2 and Ce0.8Ti0.2O2 were prepared by the citric-acid (Pechini) method and characterized using x-ray diffraction (XRD) for structure, coulometric titration for redox thermodynamics, and water-gas-shift (WGS) reaction rates. Following calcination at 973 K, XRD suggests that the mixed oxides exist as single-phase, fluorite structures, although there was no significant change in the lattice parameter compared to pure ceria. The mixed oxides are shown to be significantly more reducible than bulk ceria, with enthalpies for reoxidation being approximately -500 kJ/mol O2, compared to -760 kJ/mol O2 for bulk ceria. However, WGS rates over 1-wt% Pd supported on ceria, Ce0.8Ti0.2O2, and Ce0.8Zr0.2O2 were nearly the same. For calcination at 1323 K, the mixed oxides separated into ceria and titania phases, as indicated by both the XRD and thermodynamic results

    An investigation of NO\u3csub\u3ex \u3c/sub\u3estorage on Pt–BaO–Al\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    A series of samples containing 5-wt% or 20-wt% BaO on γ-Al2O3 with different loadings of Pt were prepared and examined for their NO2 adsorption properties using temperature programmed desorption (TPD), temperature programmed reduction (TPR), and x-ray diffraction (XRD). For calcination at 873 K or above, BaO/Al2O3 formed BaAl2O4. While carbonates were found to be unstable on the aluminate phase, NO2 reacted with the aluminate to form bulk Ba(NO3)2 and Al2O3, even at room temperature. With BaO/Al2O3, reaction to form the nitrate required slightly higher temperatures because of the need to displace CO2; however, pulsing NO2 over pure Ba(CO3) showed rapid reaction to form CO2 and NO in the gas phase, along with Ba(NO3)2, at 673 K. The decomposition temperature for Ba(NO3)2 shifted by more than 100 degrees when TPD was carried out in vacuum rather than in a carrier gas, showing that re-equilibration with the gas phase is important in the decomposition process. The addition of Pt had a minimal effect on the thermal stability of the nitrates but was essential for the reduction of the nitrate in H2. Since a relatively small amount of Pt was sufficient to cause the complete reduction of the Ba(NO3)2 phase at temperatures below 400 K, it appears that the nitrates must be extremely mobile within the Ba-containing phase. Finally, trapping studies of NO2 at 573 K, with or without 10% CO2 in the gas phase, showed no measurable difference between BaO/Al2O3 and BaAl2O4, with or without CO2

    Carotid ultrasound is not helpful in simple syncope

    Get PDF
    A critical appraisal and clinical application of Scott JW, Schwartz AL, Gates JD, Gerhard-Herman M, Havens JM. Choosing wisely for syncope: low-value carotid ultrasound use. J Am Heart Assoc. 2014 Aug 13;3(4). pii: e001063. doi: 10.1161/JAHA.114.00106

    A Study of Cerium–Manganese Mixed Oxides for Oxidation Catalysis

    Get PDF
    Cerium–manganese mixed oxides with compositions of Ce0.5Mn0.5O1.75 and Ce0.8Mn0.2O1.9 were prepared by the citric-acid (Pechini) method and their catalytic properties were compared to CeO2 and Mn2O3. The mixed oxides exhibited higher specific rates than either CeO2 or Mn2O3 for oxidation of both methane and n-butane. While XRD measurements of the mixed oxides suggested that the materials had primarily the fluorite structure, oxygen isotherms, measured by coulometric titration at 973 K, exhibited steps associated with MnO–Mn3O4 and Mn3O4–Mn2O3 equilibria, implying that manganese oxide must exist as separate phases in the solids. The P(O2) for the MnO–Mn3O4 equilibrium is shifted to lower values in the mixed oxides, indicating that the manganese-oxide phase is affected by interactions with ceria

    Acoustic properties of air-saturated porous materials containing dead-end porosity

    Get PDF
    International audienceThis study examines the acoustic properties of materials with complex micro-geometry containing partially open or dead-end porosity. One of these kinds of materials can be obtained from dissolving salt grains embedded in a solid metal matrix with the help of water. The solid matrix is obtained after the metal in liquid form has invaded the granular material formed by the salt particles at negative pressure and high temperature, and after cooling and solidification of the metal. Comparisons between theoretical and experimental results show that the classical Johnson-Champoux-Allard model does not quite accurately predict the acoustic behavior. These results suggest that the assumptions of the Biot theory may not be all fulfilled and that Helmholtz-type resonators and dead ends can be present in the material. The first part of the study proposes a simple model to account for this geometry. Based on this model, two acoustic transfer matrices are developed: one for non symmetric and one for symmetric dead-end porous elements. This model can be used to study the acoustic absorption and sound transmission properties of the type of material described above. In the second part, a series of simplified samples are proposed and tested with a three-microphone impedance tube to validate the exposed model. Finally, the third part compares predictions of the exposed model to impedance tube results on a real aluminum foam sample containing dead-end pores

    Oxidation entropies and enthalpies of ceria–zirconia solid solutions

    Get PDF
    The thermodynamic redox properties for a series of ceria–zirconia solid solutions have been measured by determining their oxidation isotherms between 873 and 1073 K. Isotherms were obtained using Coulometric titration and using O2 titration of samples equilibrated in flowing mixtures of H2 and H2O. Samples having the following compositions were studied after calcinations at 973 and 1323 K: CeO2, Ce0.92Zr0.08O2, Ce0.81Zr0.19O2, Ce0.59Zr0.41O2, Ce0.50Zr0.50O2, Ce0.25Zr0.75O2, Ce0.14Zr0.86O2, and ZrO2. While the oxidation enthalpy for CeO2 was between −750 and −800 kJ/mol O2, the oxidation enthalpies for each of the solid solutions were between −500 and −550 kJ/mol O2 and essentially independent of the extent of reduction. The shapes of the isotherms for the solid solutions were affected by the oxidation entropies, which depended strongly on the sample composition and the extent of reduction. With CeO2, Ce0.92Zr0.08O2, and Ce0.14Zr0.86O2, the samples remained single-phase after calcination at 1323 K and the thermodynamic redox properties were unaffected. By contrast, Ce0.59Zr0.41O2 formed two phases following calcination at 1323 K, Ce0.78Zr0.22O2 (71 wt.%) and Ce0.13Zr0.87O2 (29 wt.%); the isotherm changed to that which would be expected for a physical mixture of the two phases. A model is presented which views reduction of the solid solutions in terms of the local atomic structure, with the formation of pyrochlore-like clusters causing the increased reducibility of the solid solutions. Some of the changes in reducibility are associated with the number of sites from which oxygen can be removed in order to form pyrochlore-like clusters

    Oxidation Enthalpies for Reduction of Ceria Surfaces

    Get PDF
    The thermodynamic properties of surface ceria were investigated through equilibrium isotherms determined by flow-titration and coulometric-titration measurements on high-surface-area ceria and ceria supported on La-modified alumina (LA). While the surface area of pure ceria was found to be unstable under redox conditions, the extent of reduction at 873 K and a P(O2) of 1.6x10-26 atm increased with surface area. Because ceria/LA samples were stable, equilibrium isotherms were determined between 873 and 973 K on a 30-wt% ceria sample. Oxidation enthalpies on ceria/LA were found to vary with the extent of reduction, ranging from -500 kJ/mol O2 at low extents of reduction to near the bulk value of -760 kJ/mol O2 at higher extents. To determine whether +3 dopants could affect the oxidation enthalpies for ceria, isotherms were measured for Sm+3-doped ceria (SDC) and Y+3-doped ceria. These dopants were found to remove the phase transition observed in pure ceria below 973 K but appeared to have minimal effect on the oxidation enthalpies. Implications of these results for catalytic applications of ceria are discussed

    Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Contamination of grains with trichothecene mycotoxins, especially deoxynivalenol (DON), has been an ongoing problem for Canada and many other countries. Mycotoxin contamination creates food safety risks, reduces grain market values, threatens livestock industries, and limits agricultural produce exports. DON is a secondary metabolite produced by some <it>Fusarium </it>species of fungi. To date, there is a lack of effective and economical methods to significantly reduce the levels of trichothecene mycotoxins in food and feed, including the efforts to breed <it>Fusarium </it>pathogen-resistant crops and chemical/physical treatments to remove the mycotoxins. Biological approaches, such as the use of microorganisms to convert the toxins to non- or less toxic compounds, have become a preferred choice recently due to their high specificity, efficacy, and environmental soundness. However, such approaches are often limited by the availability of microbial agents with the ability to detoxify the mycotoxins. In the present study, an approach with PCR-DGGE guided microbial selection was developed and used to isolate DON -transforming bacteria from chicken intestines, which resulted in the successful isolation of several bacterial isolates that demonstrated the function to transform DON to its de-epoxy form, deepoxy-4-deoxynivalenol (DOM-1), a product much less toxic than DON.</p> <p>Results</p> <p>The use of conventional microbiological selection strategies guided by PCR-DGGE (denaturing gradient gel electrophoresis) bacterial profiles for isolating DON-transforming bacteria has significantly increased the efficiency of the bacterial selection. Ten isolates were identified and isolated from chicken intestines. They were all able to transform DON to DOM-1. Most isolates were potent in transforming DON and the activity was stable during subculturing. Sequence data of partial 16S rRNA genes indicate that the ten isolates belong to four different bacterial groups, Clostridiales, <it>Anaerofilum</it>, <it>Collinsella</it>, and <it>Bacillus</it>.</p> <p>Conclusions</p> <p>The approach with PCR-DGGE guided microbial selection was effective in isolating DON-transforming bacteria and the obtained bacterial isolates were able to transform DON.</p

    Provably-secure quantum randomness expansion with uncharacterised homodyne detection

    Full text link
    Quantum random number generators (QRNGs) are able to generate numbers that are certifiably random, even to an agent who holds some side-information. Such systems typically require that the elements being used are precisely calibrated and validly certified for a credible security analysis. However, this can be experimentally challenging and result in potential side-channels which could compromise the security of the QRNG. In this work, we propose, design and experimentally demonstrate a QRNG protocol that completely removes the calibration requirement for the measurement device. Moreover, our protocol is secure against quantum side-information. We also take into account the finite-size effects and remove the independent and identically distributed requirement for the measurement side. More importantly, our QRNG scheme features a simple implementation which uses only standard optical components and are readily implementable on integrated-photonic platforms. To validate the feasibility and practicability of the protocol, we set up a fibre-optical experimental system with a home-made homodyne detector with an effective efficiency of 91.7% at 1550nm. The system works at a rate of 2.5MHz, and obtains a net randomness expansion rate of 4.98kbits/s at 1E10 rounds. Our results pave the way for an integrated QRNG with self-testing feature and provable security.Comment: This is a preliminary draft, comments and suggestions are welcomed
    • …
    corecore