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A Study of Cerium–Manganese Mixed Oxides for Oxidation Catalysis

Abstract
Cerium–manganese mixed oxides with compositions of Ce0.5Mn0.5O1.75 and Ce0.8Mn0.2O1.9 were prepared
by the citric-acid (Pechini) method and their catalytic properties were compared to CeO2 and Mn2O3. The
mixed oxides exhibited higher specific rates than either CeO2 or Mn2O3 for oxidation of both methane and n-
butane. While XRD measurements of the mixed oxides suggested that the materials had primarily the fluorite
structure, oxygen isotherms, measured by coulometric titration at 973 K, exhibited steps associated with
MnO–Mn3O4 and Mn3O4–Mn2O3 equilibria, implying that manganese oxide must exist as separate phases
in the solids. The P(O2) for the MnO–Mn3O4 equilibrium is shifted to lower values in the mixed oxides,
indicating that the manganese-oxide phase is affected by interactions with ceria.

Keywords
manganese–cerium mixed oxides, coulometric titration, oxidation–reduction properties, methane oxidation,
butane oxidation

Comments
Postprint version. Published in Catalysis Letters, Volume 120, Issue 3-4, January 2008, pages 191-197.
Publisher URL: http://dx.doi.org/10.1007/s10562-007-9299-y

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cbe_papers/104

http://repository.upenn.edu/cbe_papers/104?utm_source=repository.upenn.edu%2Fcbe_papers%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages


 1

A Study of Cerium-Manganese Mixed Oxides For Oxidation Catalysis  

 
Gong Zhou, Parag R. Shah, and Raymond J. Gorte 

Department of Chemical and Biomolecular Engineering 
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Philadelphia, PA 19104, USA 
 
 
 

Abstract 

 Cerium-manganese mixed oxides with compositions of Ce0.5Mn0.5O1.75 and 

Ce0.8Mn0.2O1.9 were prepared by the citric-acid (Pechini) method and their catalytic properties 

were compared to CeO2 and Mn2O3. The mixed oxides exhibited higher specific rates than either 

CeO2 or Mn2O3 for oxidation of both methane and n-butane. While XRD measurements of the 

mixed oxides suggested that the materials had primarily the fluorite structure, oxygen isotherms, 

measured by coulometric titration at 973 K, exhibited steps associated with MnO-Mn3O4 and 

Mn3O4-Mn2O3 equilibria, implying that manganese oxide must exist as separate phases in the 

solids. The P(O2) for the MnO-Mn3O4 equilibrium is shifted to lower values in the mixed oxides, 

indicating that the manganese-oxide phase is affected by interactions with ceria. 

 

Key Words: Manganese-Cerium mixed oxides, Coulometric titration, oxidation-reduction 

properties, methane oxidation, butane oxidation. 
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1. Introduction 

 Mixed oxides of cerium and manganese (CexMnyOz) have received significant attention 

for a number of catalytic applications, especially in pollution control. For example, CexMnyOz is 

known to be active for catalytic wet oxidation, where water is the oxidant, to remove 

hydrocarbon pollutants from aqueous streams [1-8]. More recently, the mixed oxides have been 

shown to have a significantly lower light-off temperature for oxidation of diesel soot compared 

to the individual oxides [9] and to be selective for catalytic reduction of NOx with ammonia [10-

14]. In both of these applications, the mixed oxides show properties superior to the individual 

oxides, in part because of the ability of CexMnyOz to oxidize NO to NO2 and to then store 

adsorbed NO2 on its surface. Most recently, the mixed oxides have been suggested to have 

potential for H2 production by two-step splitting of water [15]. In this example, CexMnyOz is 

reduced by heating to high temperatures and then re-oxidized by steam to produce H2. 

 Enhanced reducibility of the mixed oxides is key in each of these applications and has 

indeed been inferred from temperature-programmed reduction (TPR) measurements [6,16-19]. 

However, while TPR measurements can be used to quantify the reduction extent of a material, 

the characteristic temperature at which reduction occurs is only a qualitative measure of the ease 

with which a material reduces [20]. This is especially true for materials that undergo bulk 

reduction, since diffusion of oxygen to the surface must precede reaction. A more quantitative 

measure of reducibility involves determining thermodynamic properties, such as enthalpy or 

free-energy changes associated with oxidation and reduction of a material. That ceria-based 

mixed oxides can exhibit enhanced reducibility is clear from the example of ceria-zirconia 

oxides (CexZr(1-x)O2), which find wide-scale application for oxygen-storage capacitance (OSC) 

[21-27]. The high reducibility of CexZr(1-x)O2 is easily explained by the small enthalpy change 

associated with reduction [28-30]. Compared to reduction of CeO2, the magnitude of the 

enthalpy change associated with reduction of CexZr(1-x)O2 is lower by approximately 250 kJ/mol 

O2.  

 In the case of CexZr(1-x)O2, enhanced reducibility is at least partially due to formation of 

solid solutions [28-30]. The individual oxides and the mixed oxides exist in a fluorite structure, 

and the lattice parameters of ceria-zirconia mixed oxides vary linearly with composition. With 

CexMnyOz, the structure of the most active phases is less clear and the catalytic properties 

depend strongly on how the material is prepared. For example, Wu, et al [31] examined 
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Ce0.5Mn0.5O2 prepared by citric-acid, sol-gel method and reported that the XRD results showed a 

very small lattice parameter shift and finely dispersed Mn3O4 peaks in the diffraction pattern. 

They concluded that the high reducibility and catalytic activity of the mixed oxides were 

associated with strong interactions between Mn and Ce. Kaneko, et al [15] argued for the 

formation of Ce0.9Mn0.1O2 solid solutions but observed no shift in the lattice parameter compared 

to pure ceria. Qi and Yang [11] reported evidence for three different phases in Mn0.3Ce0.7Ox 

prepared by the citric-acid method: (1) aggregated Mn2O3 on the CeO2 support, (2) highly 

dispersed Mn2O3 with strong interactions with CeO2, and (3) Mn atoms incorporated into the 

CeO2 lattice with very little lattice parameter shift. While Murugan, et al [19] reported that the 

structure of CexMnyOz depends strongly on the preparation procedure, they reported that there is 

a small shift in the fluorite lattice parameter upon addition of Mn. 

In the present study, we investigated the redox properties of Ce0.8Mn0.2O1.9 and 

Ce0.5Mn0.5O1.75 by measuring the oxidation isotherms at 973 K. The materials were prepared by 

the citric-acid (Pechini) method, since this leads to materials with the best mixing of the oxides. 

Because the equilibrium constant for oxidation of a solid to another solid is proportional to the 

equilibrium oxygen fugacity, P(O2), the oxidation isotherms can be used to calculate the Gibbs 

Free Energy change, ΔG, for oxidation for any solid (e.g. CexMnyOz) as a function of the oxygen 

stoichiometry. The range of P(O2) values that are of interest for equilibrium measurements with 

most catalytic oxides is so low as to be experimentally inaccessible; however, low P(O2) can be 

established through equilibrium with H2 oxidation, H2 + ½O2 = H2O, as discussed in detail 

elsewhere [28-30,32]. Although the Ce0.8Mn0.2O1.9 and Ce0.5Mn0.5O1.75 samples exhibited higher 

specific rates for oxidation of both methane and butane than either of the pure oxides, the oxygen 

isotherms for the mixed oxides are similar to what would be expect for a physical mixture of 

CeO2 and Mn2O3, suggesting that these are not solid solutions. 

2. Experimental Section 

 2.1 Samples 

 The pure ceria and manganese oxides were prepared in our laboratory by decomposition 

of Ce(NO3)3•4H2O (99.5%, Alfa Aesar) and Mn(NO3)2•4H2O (99.98%, Alfa Aesar) at 723K and 

973 K, respectively. The Ce0.8Mn0.2O1.9 and Ce0.5Mn0.5O1.75 samples were prepared using the 

citric-acid method, since this method is expected to optimize mixing of the metal cations in the 

solid and since materials prepared in this way appear to have the best catalytic properties [12]. 
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Stoichiometric amounts of Ce(NO3)3 and Mn(NO3)2 were dissolved in distilled water and then 

mixed with aqueous citric acid (≥99.5%, Aldrich) to produce a solution with a citric-acid:metal-

ion ratio of 2:1. After vigorous stirring for 1 h at room temperature, the water was removed by 

evaporation with mild heating. The resulting solids were calcined in air at 973 K for 5 hours to 

produce the mixed oxide solutions. Finally, the samples were characterized by x-ray diffraction 

(XRD), using a Rigaku Geigerflex diffractometer with CuKα radiation (λ = 1.5405 Å), and by 

BET measurements. The lattice parameters for selected samples having the fluorite structure 

were also determined from the location of the (220) diffraction peak, using NaCl as an internal 

reference. 

 2.2 Catalytic Studies 

Both methane-oxidation and butane-oxidation rates were used to characterize the 

catalytic properties of the materials. Rate measurements were performed in a ¼-inch, Pyrex, 

tubular reactor using approximately 0.10 g of catalyst. The total feed rate to the reactor was 

maintained at 120 ml/min, and the partial pressures of CH4, C4H10, O2, and He were controlled 

by adjusting the relative flow rates of each component. Methane-oxidation rates were obtained in 

50 torr of CH4 and 100 torr of O2 for methane-oxidation. Butane-oxidation rates were obtained in 

12.6 torr n-butane and 100 torr O2. For all measurements where rates are reported, the 

conversions of CH4 and O2 were kept well below 10%, so that differential conditions could be 

assumed. All reaction rates are normalized to the BET surface areas of the samples. The 

concentration of the effluent from the reactor was determined using an on-line, gas 

chromatograph, SRI8610C, equipped with a Hayesep Q column and a TCD detector.  

2.3 Equilibrium Measurements 

 The equilibrium isotherms were measured using coulometric titration in an apparatus that 

has been described in previous publications [28,29,32]. In coulometric titration, the P(O2) of the 

gases over an equilibrated sample are measured electrochemically with an oxygen sensor. For 

this study, the samples were placed in a sealed container at 973 K and reduced in a flowing 

mixture of 90% He and 10% H2 for approximately 1 h. After having been reduced, the samples 

were sealed in the gas mixture and the equilibrium P(O2) were measured using an oxygen sensor 

that is essentially a solid oxide fuel cell with a yttria-stabilized zirconia (YSZ) membrane. The 

electrodes for the sensor were made from Ag paste on the reducing side and a composite of YSZ 

and La0.8Sr0.2MnO3 (LSM) on the air side. In addition to measuring the P(O2), the sensor was 
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also used to add oxygen to the samples through application of a potential across the ion-

conducting, YSZ membrane. A precise amount of charge could be passed across the membrane 

using a Gamry Instruments potentiometer, with 1 Coulomb of charge equivalent to 2.6 μmol O2.  

 To address the question of whether high-temperature reduction could remove Mn ions 

from ceria lattice, we modified the electrode of one cell to allow measurement of the isotherm 

starting from an oxidized sample. To allow pumping of oxygen from the cell, a thin layer of 

ceria-zirconia (~ 1 mg of ceria) was added between the Ag paste and the YSZ wafer. The fresh 

sample was then exposed to a flowing mixture of 10% H2O, 5% O2, and 85% Ar for 

approximately 0.5 h at 973 K and then sealed in the gas mixture. With this cell, it was possible to 

measure the isotherm from both oxidizing and reducing conditions. 

Since 10-20 atm corresponds to less than one molecule in the entire coulometric-titration 

apparatus, it is important to recognize that the measured P(O2) are fugacities established by 

equilibrium between H2 and H2O over most of the P(O2) range that was investigated. The 

criterion we used for establishing equilibrium in coulometric titration was that the potential of 

the oxygen sensor change by less than 1 mV/h. The time required for achieving equilibrium was 

typically one or two days after the addition of oxygen to the sample. 

3. Results 

 3.1 XRD Characterization 

Fig. 1 shows the XRD patterns for the CeO2, Ce0.8Mn0.2O1.9, and Ce0.5Mn0.5O1.75 samples 

immediately after calcination at 973 K. In each case, the main peaks in the patterns are those of a 

fluorite structure similar to that of pure ceria, although a small shoulder at 36 degrees 2θ in the 

pattern for the Ce0.5Mn0.5O1.75 sample in Fig. 1a) is indicative of Mn3O4. No peaks associated 

with an Mn2O3 phase were observed. However, the diffraction lines were very broad, and the 

highest intensity peaks for Mn2O3 are located at 33 and 55.2 degrees 2θ where the fluorite 

structure of CeO2  also shows high intensity peaks (The (200) peak at 33 degrees 2θ and the 

(311) peak at 56.3 degrees 2θ are primarily associated with the fluorite structure.). The formation 

of solid solutions obviously cannot be inferred from the absence of peaks.  

Because reduction causes changes in the samples, XRD patterns are shown in Fig. 2 for 

the two mixed oxides after reduction at 973 K in 90% N2 and 10% H2 for 1 h, followed by 

oxidation in 2% O2 at 973 K. The low re-oxidation pressure for O2 was chosen because oxidation 

of MnO under these conditions gave Mn3O4, which is easier to observe in XRD patterns of the 
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mixed oxides. The patterns for the Ce0.8Mn0.2O1.9 and Ce0.5Mn0.5O1.75 samples were significantly 

affected. First, there was a narrowing of the peaks associated with the fluorite phase, implying a 

growth in the crystallite size. Both Mn-containing samples also exhibit multiple peaks associated 

with an Mn3O4 phase, for which the largest peak (the (211) peak) is located at 36.3 degrees 2θ. 

Again, no peaks assignable to the Mn2O3 phase were observed. For Ce0.8Mn0.2O1.9, we attempted 

to form the Mn2O3 phase by oxidizing the sample in pure O2 at 973 K but no changes were 

observed following this treatment. 

Because shifts in the lattice parameter with composition are usually more definitive in 

demonstrating the formation of solid solutions, we measured the lattice parameter of the 

Ce0.8Mn0.2O1.9 sample after reduction and oxidation at 973 K. The lattice parameter of the 

fluorite phase was calculated to be 0.54066 nm based on the location of the (220) diffraction 

peak. Although a previous study of a material with the same composition and essentially the 

same lattice parameter, 0.54059 nm, argued the mixed oxide was a solid solution [19], this lattice 

parameter is too close to that of pure ceria (0.5414 nm) to make the assignment firm. 

3.2 Hydrocarbon Oxidation Rates 

To determine how the activity depends on the manganese concentration, we compared 

the methane and butane oxidation rates over Ceria, Mn2O3, Ce0.8Mn0.2O1.9, and Ce0.5Mn0.5O1.75. 

Arrhenius plots for methane oxidation are shown in Fig. 3a), with activation energies reported in 

Table 1. The methane-oxidation rates were similar on the two mixed oxides and higher than that 

observed on either Mn2O3 or CeO2. The activation energies on the Mn-containing samples were 

also significantly lower than on CeO2. The reaction rates for butane oxidation on Ceria, Mn2O3, 

and Ce0.8Mn0.2O1.9 are reported in Fig. 3b). Again, the ceria-manganese mixed oxide sample 

exhibited higher reaction rates than either CeO2 or Mn2O3.   

 3.3 Thermodynamic measurements 

 Fig. 4 shows the O2 isotherms for ceria and manganese oxide at 973 K, measured using 

coulometric titration. After equilibration, following sample reduction in a flowing mixture of 

90% N2 and 10% H2 for 1 h at 973 K, the O2 fugacity was between 10-26 and 10-24 atm for both 

samples. In this range of P(O2), ceria should be only slightly reduced. Based on previous 

thermodynamic measurements [28,30], the equilibrium, O:Ce ratio at 10-24 atm is greater than 

1.97. In agreement with this, very little oxygen was taken up by the ceria sample when the 

oxygen fugacity was raised to above 10-2 atm.  
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By contrast, manganese oxide is expected to exist as MnO at a P(O2) of 10-24 atm and is 

expected to take up 6.3 mmol O/g Mn2O3 in order to form Mn2O3. In agreement with this, the 

isotherm for MnOx exhibits two steps at P(O2) near 10-10 atm and 10-2 atm, with a total uptake of 

oxygen close to that predicted from the stoichiometries of MnO and Mn2O3. The first step occurs 

with the addition of 4.2 mmol O/g Mn2O3 and is associated with the formation of Mn3O4. The 

second step occurs with the addition an extra 2.1 mmol O/g Mn2O3 and involves formation of 

Mn2O3. The P(O2) values at these steps agree well with the literature values for the 

thermodynamic equilibria, which indicate an equilibrium P(O2) of 1.5 x 10-11 atm for the reaction 

6 MnO + O2 = 2 Mn3O4 and 7 x 10-2 atm for the reaction 4 Mn3O4 + O2 = 6 Mn2O3 at 973 K [33], 

especially considering that the literature equilibrium data had to be extrapolated from lower 

temperatures. 

 The oxygen isotherms at 973 K are shown for the Ce0.5Mn0.5O1.75, Ce0.8Mn0.2O1.9, and 

Mn2O3 samples in Figure 5. In order to emphasize the similarities between the samples, we have 

normalized the amount of oxygen that was added to the molar content of Mn in each sample. 

Also, while the samples were initially reduced to lower P(O2) by the treatment in 10% H2 at 973 

K, we have chosen to consider only the oxygen added after the P(O2) rose above 10-21 atm. The 

amount of oxygen required to raise the P(O2) from its initial value to above 10-21 atm on each of 

the ceria-containing samples was small, essentially identical to that shown for pure CeO2 in Fig. 

3. The amount of oxygen taken up by ceria was only significant compared to the Mn content for 

the Ce0.8Mn0.2O1.9 sample. Due to the relatively small amount of Mn in that particular sample, it 

is likely that most of the oxygen that was added in taking the P(O2) from 10-21 atm to 10-14 atm is 

associated with the ceria oxidation. 

Clearly, the isotherms for the Mn-containing samples in Fig. 5 are similar, each showing 

steps in a P(O2) range corresponding to oxidation of MnO to Mn3O4 and to oxidation of Mn3O4 

to Mn2O3. (For the Ce0.5Mn0.5O1.75 sample, the isotherm was stopped before completing the 

transition from Mn3O4 to Mn2O3.) The overall consumption of oxygen per Mn in each sample 

was also very close to the amounts expected for each transition, 0.33 mol-O/mol-Mn for reaction 

of MnO to Mn3O4 and 0.17 mol-O/mol-Mn and for reaction of Mn3O4 to Mn2O3. (For the 

Ce0.8Mn0.2O1.9 sample, we have ignored the oxygen associated with taking the oxygen fugacity 

from 10-21 atm to 10-13 atm, since oxygen is likely associated with ceria, as discussed above.) The 

data leads to an important conclusion. Assuming that the first step does indeed correspond to 
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reaction of MnO to Mn3O4, the Mn ions must exist in relatively large domains. If there were 

isolated Mn ions in a ceria framework, it would seem unlikely that there would be an equilibrium 

between the reduced and oxidized species that would be similar to the one between MnO and 

Mn3O4, since Mn3O4 has Mn ions of mixed valency. The fact that the oxygen stoichiometries 

match the Mn contents suggests that all of the Mn accounted for. In other words, the 

concentration of isolated Mn ions must be small. Finally, the data suggest that ceria affects the 

equilibrium P(O2) where MnO reacts to Mn3O4. The Ce0.5Mn0.5O1.75 and Ce0.8Mn0.2O1.9 samples 

are oxidized at somewhat lower P(O2) than that measured on the manganese oxide sample. 

One possible issue with the above measurements is that the Mn ions may have come out 

of the solution with the ceria during the high-temperature reduction. Therefore, we repeated the 

isotherm measurements on the Ce0.8Mn0.2O1.9 sample, starting from the freshly oxidized sample, 

with the results shown in Fig. 6. While the scale in Fig. 6 is referenced to the completely reduced 

sample, the oxygen was removed from the sample starting from it state after oxidation in 10% 

H2O, 5% O2, and 85% Ar. Initially, the P(O2) decreased almost linearly while oxygen was being 

removed in a manner similar to that observed for high-surface-area ceria [32]. As we continued 

removing oxygen from the sample, a transition from Mn3O4 to MnO was clearly observed. After 

the transition, the change in P(O2) with oxygen removal was again gradual, similar to what is 

observed with high-surface-area ceria. After reaching a P(O2) 10-20 atm, a second isotherm was 

measured by adding oxygen to the sample. The second isotherm is almost identical to the first 

but with less uptake after the transition from MnO to Mn3O4. The overall removal/addition of 

oxygen per Mn in Ce0.8Mn0.2O1.9 was approximately 0.3 mol-O/mol-Mn for reaction of MnO to 

Mn3O4, similar to what we had observed in figure 5. However, the transition between MnO to 

Mn3O4 occurred at slightly higher P(O2) compared to the one shown in Fig 5. We suggest that 

the subtle differences are possibly due to the sintering of Mn in the mixture for the highly 

reduced sample. Interestingly, we did not see a transition from Mn3O4 to Mn2O3 of the freshly 

oxidized sample, in agreement with the XRD results which suggested that the manganese oxide 

exists as Mn3O4 after calcination. 

4. Discussion 

 What we set out to establish in this study was whether mixed oxides of cerium and 

manganese could form solid solutions and whether interactions between the two oxides enhanced 

activity for simple hydrocarbon-oxidation reactions. The primary conclusions are that 
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interactions between ceria and manganese oxide phases lead to enhanced catalytic activity, but 

that solid solutions are not formed. Regarding the formation of solid solutions, the small size of 

peaks associated with manganese-oxide phases in the XRD data is clearly not definitive in 

determining whether or not solid solutions form. The fact that there is no significant shift from 

that of pure ceria in the lattice parameter for the fluorite structure is a strong indication that Mn 

ions do not substitute into this lattice. Furthermore, the equilibrium transition between MnO and 

Mn3O4 phases in the isotherms on each of the samples is difficult to understand unless one 

assumes that there is a separate manganese-oxide phase.  

Obviously, the conclusion reached from the data on our samples, that Mn does not 

substitute for Ce in the fluorite lattice, may not be true for all different ways in which the mixed 

oxides could be prepared. However, the synthesis method used in this study, the Pechini method, 

was that which typically leads to the best mixing of the metal ions. While the relatively high-

temperatures we used to treat the materials may have caused phase separation, the fact that the 

phase separation is so complete, even for materials with the relatively dilute composition of 

Ce0.8Mn0.2O1.9, suggests that the Mn ions never were in the lattice or can be removed very easily. 

It is interesting to consider why the mixed oxides showed a higher catalytic activity than 

either of the individual oxides and it is tempting to suggest that this is related to lower P(O2) 

observed in the isotherms for the oxidation of MnO to Mn3O4 in the Ce0.5Mn0.5O1.75 and 

Ce0.8Mn0.2O1.9 samples. On the Ce0.8Mn0.2O1.9 sample, this transition occurs below 10-13 atm, a 

value much lower than that which we measured on Mn2O3. The implication is that the Mn ions in 

ceria-containing samples are more easily oxidized, which in turn suggests strong interactions 

between ceria and manganese oxide as others have also suggested. One possibility is that there is 

a transfer of oxygen from ceria, which is easily oxidized, to the supported manganese-oxide 

cluster. Oxygen transfer from ceria has been suggested in many studies of ceria-supported 

metals. For example, Smirnov and Graham [34] showed that Pd films that had been vapor 

deposited onto ceria-zirconia substrates could be completely oxidized by heating to 423 K in 

ultra-high vacuum. Given that oxygen binding is much stronger on reduced ceria-zirconia than it 

is on Pd [28,30,35], this transfer of oxygen must be endothermic, suggesting that the driving 

force for oxygen transfer from ceria-zirconia to Pd is entropic. A similar situation may occur 

with CeO2 and MnO, even though this reaction should also be endothermic.  
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The results here for mixed oxides of cerium and manganese demonstrate that mixed 

oxides can have interesting properties, even if they are not solid solutions. Understanding the 

reasons behind the interactions between the two phases remains an interesting problem in 

catalysis. 

5. Conclusions 

 Our results indicate that mixed oxides of cerium and manganese do not form solid 

solutions. While XRD results on the mixed oxides could be interpreted as resulting from a 

fluorite structure with Mn ions substituted for some of the Ce ions, oxygen isotherms show that 

almost all of the manganese oxide is associated with a separate phase. However, interactions 

between the manganese oxide and the ceria cause the mixed oxide to be more active for 

hydrocarbon-oxidation reactions than either ceria or manganese oxide individually. 
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Table 1. Surface areas and activation energies (EA) for each of the catalysts. 
Sample Surface area 

(m2/g) 
Methane oxidization 

EA (kJ/mol) 
Butane oxidization 

EA (kJ/mol) 
CeO2 94 129 105 
Mn2O3 34 90 113 
Ce0.8Mn0.2Oy 35 98 96 
Ce0.5Mn0.5Oy 78 95 - 
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Figure 1. XRD patterns for cerium-manganese mixed oxides prepared using the citric-acid 
(Pechini) method, followed by calcination in air at 973 K. a) Ce0.5Mn0.5O1.75, b) Ce0.8Mn0.2O1.9, 
and c) CeO2. 
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Figure 2. XRD patterns for a) Ce0.5Mn0.5O1.75 and b) Ce0.8Mn0.2O1.9, after reduction in 10% H2 at 
973 K, followed by oxidation in 2% O2. Asterisks show peaks that are associated with Mn3O4, 
the stable phase of manganese oxide under these oxidizing conditions. 
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Figure 3a). Differential reaction rates for methane oxidation on the following catalysts: (●) 
CeO2, (■) Mn2O3, (▲) Ce0.8Mn0.2O1.9, and (♦) Ce0.5Mn0.5O1.75. The reaction was carried out at 
partial pressures of 50 torr for CH4 and 100 torr of O2. 
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Figure 3b). Differential reaction rates for methane oxidation on the following catalysts: (●) 
CeO2, (■) Mn2O3, and (▲) Ce0.8Mn0.2O1.9. The reaction was carried out at partial pressures of 
12.6 torr for n-butane and 100 torr of O2. 
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Figure 4. Oxygen consumed per gram of oxidized sample (mmol/g) as a function of P(O2) after 
the samples were reduced in 10% H2 (balance N2) at 973 K for 1 h. Results are shown for (●) 
CeO2 and (▲) Mn2O3.  
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Figure 5. Oxygen consumed per mole of Mn (mol-O/mol-Mn) as a function of P(O2) after the 
samples were reduced in 10% H2 (balance N2) at 973 K for 1 h. Results are shown for (□) 
Ce0.8Mn0.2O1.9, (◊) Ce0.5Mn0.5O1.75, and (∆) Mn2O3. 
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Figure 6. Oxygen per mole of Mn (mol-O/mol-Mn) for Ce0.8Mn0.2O1.9 as a function of P(O2) at 
973 K. The squares. (□) were points measured by removing oxygen, starting from the fresh 
sample oxidized in 10% H2O, 5% O2, and 85% Ar. The triangles (∆) were measured by adding 
oxygen to the same sample. 
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