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Abstract 

 The thermodynamic redox properties for a series of ceria-zirconia solid solutions have 

been measured by determining their oxidation isotherms between 873 and 1073 K. Isotherms 

were obtained using Coulometric titration and using O2 titration of samples equilibrated in 

flowing mixtures of H2 and H2O. Samples having the following compositions were studied after 

calcinations at 973 K and 1323 K: CeO2, Ce0.92Zr0.08O2, Ce0.81Zr0.19O2, Ce0.59Zr0.41O2, 

Ce0.50Zr0.50O2, Ce0.25Zr0.75O2, Ce0.14Zr0.86O2, and ZrO2. While the oxidation enthalpy for CeO2 

was between -750 and -800 kJ/mol O2, the oxidation enthalpies for each of the solid solutions 

were between -500 and -550 kJ/mol O2 and essentially independent of the extent of reduction. 

The shapes of the isotherms for the solid solutions were affected by the oxidation entropies, 

which depended strongly on the sample composition and the extent of reduction. With CeO2, 

Ce0.92Zr0.08O2, and Ce0.14Zr0.86O2, the samples remained single-phase after calcination at 1323 K 

and the thermodynamic redox properties were unaffected. By contrast, Ce0.59Zr0.41O2 formed two 

phases following calcination at 1323-K, Ce0.78Zr0.22O2 (71 wt%) and Ce0.13Zr0.87O2 (29 wt%); and 

the isotherm changed to that which would be expected for a physical mixture of the two phases. 

A model is presented which views reduction of the solid solutions in terms of the local atomic 

structure, with the formation of "pyrochlore-like" clusters causing the increased reducibility of 

the solid solutions. Some of the changes in reducibility are associated with the number of sites 

from which oxygen can be removed in order to form pyrochlore-like clusters. 

Key Words: Ceria-Zirconia, Coulometric titration, thermodynamic properties, reduction 

enthalpy, entropy. 
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Introduction 

 Ceria-zirconia solid solutions are important for providing oxygen-storage capacitance 

(OSC) in automotive three-way catalysts [1-7]. The solid solutions are also finding new 

applications as supports for water-gas-shift catalysts [8-15] and as promoters in other reactions 

[16-20]. Ceria-zirconia solid solutions are typically used, rather than pure ceria, because the solid 

solutions are more easily reduced than pure ceria. The higher OSC of the solid solutions has 

sometimes been attributed to the mixtures having higher surface areas after thermal treatments 

[21], but it seems clear that other factors also play a role [6,21-25]. For example, thermodynamic 

calculations using literature data for pure ceria show that it should not be possible to 

substantially reduce ceria in gas-phase mixtures with H2:H2O or CO:CO2 ratios less than 10 at 

temperatures less than 973 K [26-33]. Since automotive exhaust is always more oxidizing than 

this, i.e. there is always much more steam than H2 in automotive exhausts, these calculations 

imply that ceria should not be able to provide oxygen storage. 

 Clearly, the materials used for OSC must differ significantly from the high-temperature 

forms of ceria that have been used to obtain the thermodynamic data that is in the literature. 

Furthermore, determination of thermodynamic properties, including oxidation enthalpies and 

entropies, would seem to be crucial for understanding how ceria-based catalysts function. 

Because there is relatively little data available on the thermodynamic properties of ceria-zirconia 

solid solutions [34], our laboratories have begun the measurement of these properties in order to 

understand how zirconia affects the oxidation and reduction of CeO(2-x) [35,36]. Our approach 

for obtaining thermodynamic parameters has been to measure equilibrium isotherms. For 

example, at any specific temperature, there is an O2 fugacity, P(O2), that is in equilibrium with 

CeO(2-x) [26-33]. The range of P(O2) values that are of interest for equilibrium measurements is 

so low as to be experimentally inaccessible, making it necessary to establish P(O2) through 

equilibrium with H2 oxidation, H2 + ½O2 = H2O. Low values for P(O2) can then be achieved 

through gas-phase mixtures of H2O and H2, according to Equation 1. 

P(O2)½ = Kequilib
-1 * P(H2O)/P(H2)   (1)  

The equilibrium constant for oxidation of a metal oxide, such as CeO(2-x), is directly related to 

P(O2), since the activities of solid phases are one. Therefore, the measurement of P(O2) as a 

function of x provides the equilibrium constant and the Gibbs Free Energy, ΔG, for reaction at 



 3

that value of x. Oxidation enthalpies, ΔH, can be determined by measuring isotherms at different 

temperatures, using Equation 2. 

ΔH = -R δln(P(O2))/δ(1/T)⎜x     (2)  

 Previous work from our laboratories focused on ceria-rich materials, with most of the 

samples having more than 50% Ce [35]. While a few samples were examined after high-

temperature calcination, this was avoided in past work for materials that undergo phase 

separation. In the present paper, we will first review the previous results from our laboratories, 

and then extend the data to include equilibrium properties for Zr-rich, solid solutions. Finally, we 

will report isotherm data on samples that underwent a phase change following high-temperature 

calcination. In all cases, the redox properties of the mixed oxides depended strongly on the 

composition of the phases that were present. The oxidation enthalpies for reduction of the solid 

solutions were significantly different from that of pure ceria but were essentially independent of 

Zr content. This result implies that oxygen binding is very localized, not dependent on long-

range structure. By contrast, oxidation entropies changed dramatically with composition and 

extent of reduction, a result that can be rationalized based on the number of ways oxygen can be 

removed from localized clusters. 

Experimental Section 

 Samples 

 Ceria-zirconia solid solutions were prepared using the citric acid method as described in a 

previous paper [37]. Stoichiometric amounts of Ce(NO3)3 and ZrO(NO3)2•xH2O were dissolved 

in distilled water and then mixed with aqueous citric acid (≥99.5%, Aldrich) to produce a 

solution with a citric-acid:metal-ion ratio of 1:2. The solutions were stirred vigorously at room 

temperature for one hour and then the water was removed by evaporation. Finally, the resulting 

solids were heated in air at 723 K for 5 hours to produce the solid solutions. Additional 

calcinations at 973 K or 1323 K were used to check the phase stability of the CeyZr1-yO2 samples 

and to determine the effect of calcination temperature on the equilibrium properties. The samples 

that were studied are listed in Table 1, along with some of their properties. 

 The phase compositions and structures of the samples were determined by x-ray 

diffraction (XRD), using a Cu Kα radiation source (λ = 1.5405 Å). Fig. 1, which shows 

representative XRD data for a range of ceria-zirconia solutions, indicates that all of the solid 

solutions appear to be cubic and single phase after calcination at 973 K. The lattice constants for 
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each sample could be calculated using the location of the (220) diffraction peak. While ceria-

zirconia solid solutions with intermediate compositions may form meta-stable tetragonal phases 

[37], it is difficult to distinguish this from a cubic phase using XRD alone, particularly with 

broad diffraction peaks. The relationship between the lattice constant and the Zr4+ concentration 

in ceria-zirconia solutions has been reported [37], so that the lattice parameters provided a check 

of the sample compositions. In each case, the calculated compositions agreed very well with the 

known compositions. Although some of the materials may not be single phase, we calculated 

average crystallite sizes using the width of the (220) peak and the Debye-Scherrer equation.  

Fig. 2 shows the diffraction patterns for selected samples after calcination at 1323 K for 4 

h. The high-ceria sample, Ce0.81Zr0.19O2, remained cubic, with the only change being an increase 

in the crystallite size, as indicated by the sharpening of the XRD lines. The two samples with 

intermediate compositions, Ce0.59Zr0.41O2 and Ce0.33Zr0.67O2, were unstable and separated into 

two phases, as expected [35,38]. The compositions of the two phases in each sample could be 

estimated from the lattice parameters, and the fraction of material in each phase could then be 

calculated using the lever rule. This calculation indicated that Ce0.59Zr0.41O2 sample existed as a 

mixture of Ce0.78Zr0.22O2 (71 wt%) and Ce0.13Zr0.87O2 (29 wt%) after calcination at 1323 K, while 

Ce0.33Zr0.67O2 existed as a mixture of Ce0.79Zr0.21O2 (22 wt%) and Ce0.20Zr0.80O2 (78 wt%). 

Finally, the low-ceria sample, Ce0.14Zr0.86O2, remained single phase but exhibited a pattern 

indicative of the tetragonal zirconia structure.  

Oxygen Isotherms 

 Most of the oxygen isotherms were measured in a flow reactor, using techniques that 

have been described elsewhere [35]. Between 0.5 and 1.0 g of sample were placed in a quartz 

tube and then either oxidized in flowing air or reduced in dry flowing H2 at the temperature of 

interest for 1 h. Each sample was then exposed to a flowing H2-H2O mixture (30ml/min) at the 

same temperature for 3 h. The water vapor was introduced into the gas stream by passing H2 

through a temperature-controlled, water bubbler and the H2O partial pressure was evaluated from 

the equilibrium vapor pressure. The H2O:(H2 +H2O) ratios of H2-H2O mixtures along with 

corresponding P(O2) are listed in Table 2. After equilibration of the sample in the H2-H2O 

mixture, the reactor was purged with dry He for 0.5 hour. Finally, the oxidation state of the 

sample was determined by measuring the amount of oxygen required for complete re-oxidation 

at the same temperature. This was accomplished by flowing air (21% O2 and 79% N2) over the 
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sample at a rate of 4.3 ml/min and measuring the composition of the effluent gas from the reactor 

using a quadrupole mass spectrometer. The N2 signal from the air was used as an internal 

standard for determining the amount of O2 consumed; because the O2 and N2 signals showed 

clear break-through times, accurate measurements of O2 consumption could be obtained. After 

re-oxidation of the sample, the reactor was again purged with dry He for 0.5 h. 

 It was possible to show that equilibrium was achieved by the fact that the extent of 

reduction was independent of whether we started with an oxidized or reduced sample. However, 

equilibrium was reached more quickly starting with samples that had been reduced in dry H2 

prior to exposing them to H2-H2O mixtures. We also observed that equilibrium was achieved 

more quickly when the samples were doped with 1 wt% Pd; however, in the present study, Pd 

doping was used only on the Ce0.14Zr0.86O2 sample. The Pd was added using an aqueous solution 

of (NH3)4Pd(NO3)2 (99.9%, Alfa Aesar), after which the sample was calcined at 723 K in air for 

an additional 5 h. 

 Because the range of P(O2) that could be accessed in the flow reactor was limited to 

lower values by our ability to control the P(H2O)/P(H2) ratio (i.e. 10-26 atm < P(O2)< 10-21 atm at 

973 K), some isotherms were measured using Coulometric Titration [31,34,36,39-48]. In 

Coulometric Titration, the sample is placed in a sealed container with an ion-conducting 

membrane (usually yttria-doped zirconia) separating the inside from the outside of the container. 

Oxygen is added or removed from the container by placing a potential across the membrane; so 

long as the membrane is strictly an ion conductor, the amount of oxygen transferred can be 

calculated from the amount of charge that has been transferred, as determined using a 

potentiometer. At open circuit, the membrane and its electrodes are used as an oxygen sensor, 

with the potential across the membrane related to the P(O2) in the container through the Nernst 

Equation. Unfortunately, because our system used Pt electrodes, we were unable to obtain data 

for very low P(O2) (i.e. the minimum P(O2) at 973 K was 10-19 atm) because of the tendency of 

Pt to react with ZrO2 to form PtZr3 [40]. This led to a small gap in the isotherms between the 

low-P(O2) region measured using the flow system and the high-P(O2) region measured using 

Coulometric Titration. 

Results and Discussion 

 Samples calcined to 973 K 
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 To characterize the single-phase, ceria-zirconia solid solutions, we first examined the 

properties of materials that had been calcined only at 973 K. Fig. 3 shows isotherms at 973 K for 

ceria, zirconia, and a series of ceria-zirconia solid solutions having a wide range of compositions. 

Pure ZrO2 showed minimal reduction in all cases, as expected. The isotherm for pure ceria also 

agreed well with published data [27]. It is worth noting again that ceria is almost completely 

oxidized (O:Ce = 1.98) at 973 K and a P(O2) of 10-23 atm, conditions that correspond to a gas 

mixture consisting of 8% H2O and 92% H2. The data in Fig. 3 show that the properties of the 

solid solutions cannot be described as physical mixtures of ceria and zirconia. Each of the solid 

solutions underwent reduction at much higher values of P(O2) than is observed for pure CeO2 or 

ZrO2. For example, the Ce0.92Zr0.08O2 sample is significantly more reduced than CeO2 at all 

P(O2) between 10-21 and 10-26 atm. Furthermore, calcining the Ce0.92Zr0.08O2 sample to 1323 K 

for 4 h had no effect on the oxygen isotherm, even though this treatment significantly increased 

the crystallite size, as shown in Table 1. 

A distinctive feature in the isotherms of all of the ceria-zirconia solutions is that there is a 

plateau region at the highest accessible P(O2), with the O:M ratio remaining constant for a 

significant range of P(O2) values. With the Ce0.92Zr0.08O2 and Ce0.81Zr0.19O2 sample, these 

plateaus occur at O:M ratios of approximately 1.96 and 1.90; and it is probably significant that 

the compositions at these plateaus can be considered a combination of CeO2 and the pyrochlore 

structure [36], Ce2Zr2O7 (e.g. Ce0.81Zr0.19O1.905 can be written as 0.62 CeO2 + 0.095 Ce2Zr2O7.). 

XRD did not show any special phases associated with the "plateau" oxidation state [35], 

implying that there is no bulk pyrochlore present. However we suggest that pyrochlore clusters 

are forming on the atomic scale, as discussed elsewhere [36].  

 Solid solutions with roughly equal amounts of Ce and Zr (Ce0.59Zr0.41O2 and 

Ce0.50Zr0.50O2) were the most reducible. From a scientific point of view, it is also interesting to 

consider the two high-zirconia samples, Ce0.25Zr0.75O2 and Ce0.14Zr0.86O2. The isotherm data for 

Ce0.25Zr0.75O2 indicated the O:M ratio was ~1.87 at all P(O2) that were accessible using flow 

titration with H2-H2O mixtures. The O:M ratio for complete reduction of Ce+4 to Ce+3 would be 

1.875. For Ce0.14Zr0.86O2, the O:M ratio at the lowest P(O2) is also close to what would be 

expected for complete reduction of Ce+4, 1.93. Since pure zirconia shows a slight reduction (O:M 

= 1.98), we suggest that the slight over-reduction of Ce0.14Zr0.86O2 may be associated with 

reduction of surface zirconia. However, unlike the Ce0.25Zr0.75O2 sample, we observed that the 
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Ce0.14Zr0.86O2 sample progressively oxidized as the P(O2) increased. Because removal of an O-2 

ion requires reduction of two Ce+4 ions, it is likely that spatially isolated Ce+4 ions in 

Ce0.14Zr0.86O2 are more stable and are therefore more difficult to reduce. The metal ions in the 

fluorite structure have 12 nearest-neighbor ions, implying that essentially all of the Ce+4 ions in 

Ce0.25Zr0.75O2 can couple with other Ce+4 ions, while the same will not be true for Ce0.14Zr0.86O2. 

 Figures 4a through 4d display the oxygen isotherms at 873, 973, and 1073 K for the 

Ce0.81Zr0.19O2, Ce0.5Zr0.5O2, Ce0.25Zr0.75O2, and Ce0.14Zr0.86O2 samples, after the samples had been 

calcined at only 973 K to avoid formation of two phases. The shapes of the isotherms were 

unaffected by temperature but the shift in those isotherms allowed determination of the oxidation 

enthalpies using Equation 2. Fig. 5 displays the oxidation enthalpies determined from the data in 

Fig. 4; Fig. 6 displays the oxidation entropies, calculated from the differences between ΔG and 

ΔH. The oxidation enthalpies and entropies are also summarized in Table 3. The data for the 

Ce0.81Zr0.19O2 and Ce0.25Zr0.75O2 have been presented in detail elsewhere [36] and will be 

discussed here only briefly. 

 For the Ce0.81Zr0.19O2 sample, the equilibrium data in Fig. 4a show oxidation occurs in 

two P(O2) regions at all three temperatures. In the lower P(O2) region, Ce0.81Zr0.19O1.8 becomes 

oxidized to a stoichiometry of Ce0.81Zr0.19O1.90, at which point the oxygen stoichiometry remains 

at a constant value over a considerable range of P(O2). The oxidation of Ce0.81Zr0.19O1.90 to 

Ce0.81Zr0.19O2 occurs only at higher P(O2). Surprisingly, the oxidation enthalpies calculated from 

this data fall between -500 and -550 kJ/mol O2 in both regions, and there are no obvious changes 

in the oxidation enthalpies with the extent of reduction. The values for -ΔH are lower than that 

obtained for pure CeO2 (-760 kJ/mol O2 [49]) by approximately 240 kJ/mol, which partially 

explains the comparative ease the solid solutions undergo reduction. Of additional interest, -ΔH 

is essentially independent of oxygen stoichiometry. Even though the oxygen isotherms exhibit 

distinct ranges of P(O2) for reduction of Ce0.81Zr0.19O2 to Ce0.81Zr0.19O1.9 and reduction of 

Ce0.81Zr0.19O1.9 to Ce0.81Zr0.19O1.8, the differential enthalpy changes are the same in both ranges. 

It is also interesting to consider that the enthalpies determined here are very close to the 

enthalpies of oxidation for pyrochlore, Ce2Zr2O7. Using equilibrium data from the literature for 

the oxidation of the pyrochlore [34], we have calculated enthalpies of oxidation for this 

compound to be between -520 and -540 kJ/mol O2.   
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 Isotherms at the three temperatures for Ce0.5Zr0.5O2 are shown in Fig. 4b. Since 

measurements were only performed in the flow reactor, the range of O:M ratios that were 

sampled was more limited, but the oxidation enthalpies were again determined to be between -

480 and -530 kJ/mol. At all three temperatures, a significant fraction of the Ce metal ions 

remained as Ce+4 at the lowest P(O2) accessible in this study. For the Ce0.25Zr0.75O2 sample, Fig. 

4c, the O:M stoichiometry remained between 1.87 and 1.88 for the accessible range of P(O2) in 

the flow-titration reactor, making it necessary to use Coulometric Titration to gain any 

information about oxidation enthalpies at higher P(O2). As with Ce0.81Zr0.19O2, the oxidation 

enthalpies fell between -500 and -550 kJ/mol O2. Finally, the isotherms for Ce0.14Zr0.86O2 are 

shown in Fig. 4d. The oxidation enthalpies that we calculate from this data appear to be slightly 

lower in magnitude, between -450 and -500 kJ/mol O2, but this difference is certainly small 

compared to the very large differences in oxidation enthalpies between the ceria-zirconia 

samples and that of pure CeO2. 

 Since the oxidation enthalpies of the solid solutions are almost the same in each case, the 

important features differentiating the adsorption isotherms of the various ceria-zirconia solid 

solutions result primarily from entropy effects, as shown in Fig. 6. In agreement with the 

literature [27-29,33], the magnitudes of the partial molar entropies for oxidation of pure CeO2, 

calculated from our data, are relatively large, between -300 and -350 J/mol.K. The high entropy 

change for CeO2 is due to the large number of equivalent sites from which oxygen can be 

removed from the fluorite lattice. For oxidation of Ce0.25Zr0.75O1.88 and oxidation of 

Ce0.81Zr0.19O1.9 to Ce0.81Zr0.19O2, the magnitudes of the entropy changes are almost as large as for 

CeO2, approximately -250 J/mol.K, which suggests oxygen can again be removed from a large 

number of possible sites. However, for oxidation of Ce0.81Zr0.19O1.8 to Ce0.81Zr0.19O1.9, the 

magnitude of the partial molar oxidation entropy is much lower, between -50 and -100 J/mol.K, 

which suggests a small number of sites are involved. The entropy change for oxidation of 

Ce0.14Zr0.86O1.93 is nearly zero (circa -20 J/mol.K), which implies the system is highly ordered.  

 Previously, we suggested that the oxidation enthalpies and entropies for the solid 

solutions could be explained by viewing oxidation and reduction as a strictly local phenomenon 

[36]. Each metal cation in the fluorite lattice has 12 nearest neighbors and each oxygen anion is 

in contact with 4 metal cations. If one assumes that the energetics of oxidation are strictly local, 

that the energy to remove an oxygen ion depends only on the four metal cations that are in direct 
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contact with that oxygen ion, then the energy associated with adding or removing an oxygen 

atom will not depend on the bulk composition. Furthermore, adding an oxygen ion to a site 

surrounded by two Ce+3 cations and two Zr+4 cations should be energetically similar to adding an 

oxygen atom to the pyrochlore structure. Indeed, the oxidation enthalpies for each of the ceria-

zirconia solutions are identical to what has been reported for oxidation of the pyrochlore, 

Ce2Zr2O7. 

 More importantly, this model can explain some of the entropic effects that affect the 

isotherm. For example, for oxidation of Ce0.81Zr0.19O1.9 to Ce0.81Zr0.19O2, the entropy change is 

large. This is because each Zr+4 cation in the structure can be thought of as being paired with one 

or more other Zr+4 cations and each pair of Zr+4 cations can interact with a large number of Ce+n 

cations in its vicinity. The large number of ways an oxygen atom can be removed from a site that 

is surrounded by two Zr+4 and two Ce+n results in a high entropy change. Once each pair of Zr+4 

cations is part of a (Zr+4-Ce+3)2 cluster, a point reached at the plateau stoichiometry (e.g. 

Ce0.81Zr0.19O1.9), the number of ways in which these two Zr+4 cations can be used in forming a 

second cluster are limited—at least if there is a repulsion between oxygen vacancies. Hence, the 

number of oxygen atoms available for removal decreases at a stoichiometry corresponding to all 

of the Zr+4 being part of a reduced pyrochlore cluster. Similarly for Ce0.14Zr0.86O2, the entropies 

are near zero because only specific O-2 anions associated with two Ce+4 ions can be easily 

removed from the lattice.  

 Samples calcined to 1323 K 

To determine the effect of high-temperature calcination and phase separation of the solid 

solutions, we examined selected materials that had been heated in air to 1323 K for 4 h. As 

discussed earlier, this treatment had no effect on the structure of the Ce0.92Zr0.08O2 sample as 

measured by XRD and no effect on the equilibrium isotherm of this sample, as shown by the data 

in Fig. 3. While calcination of the Ce0.14Zr0.86O2 sample up to 1323 K caused changes in the 

XRD, i.e. formation of a clearly tetragonal structure, Fig. 7a shows that this pretreatment did not 

lead to any changes in the equilibrium isotherm measured at 973 K.  

 It is more interesting to consider the effect of high-temperature calcination on solid 

solutions with intermediate compositions, Ce0.59Zr0.41O2 and Ce0.33Zr0.67O2, since XRD showed 

these compositions to be unstable. Fig. 7b, which provides a comparison of isotherms on 

Ce0.59Zr0.41O2 following calcination to either 973 K or 1323 K, shows that the isotherm is shifted 
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to higher O:M ratios following the 1323 K treatment. The effect of calcination is simply the 

result of changes in the phases present in the sample. Based on the XRD results discussed earlier, 

we estimated that the Ce0.59Zr0.41O2 decomposed into Ce0.78Zr0.22O2 (71 wt%) and Ce0.13Zr0.87O2 

(29 wt%) phases. Assuming that Ce0.78Zr0.22O2 would have a nearly identical isotherm to that of 

Ce0.81Zr0.19O2 and Ce0.13Zr0.87O2 as that of Ce0.14Zr0.86O2, we calculated that the isotherm of the 

1323 K sample would be that of the dashed line in Fig. 7b. It is clear that the calculated result 

agrees very well with the measured isotherm. Similarly, Ce0.33Zr0.67O2 decomposed into 

Ce0.79Zr0.21O2 (22 wt%) and Ce0.20Zr0.80O2 (78 wt%) phases following calcination to 1323 K. Fig. 

7c shows that the O:M ratios for the Ce0.33Zr0.67O2 after calcination to 1323 K were again slightly 

higher at each P(O2). The simulated isotherm, the dashed line calculated from isotherms of 

Ce0.81Zr0.19O2 and Ce0.25Zr0.75O2, is slightly lower than the measured isotherms, especially at high 

P(O2). This could be due to difference in the isotherms between Ce0.20Zr0.80O2 and Ce0.25Zr0.75O2.  

Despite the difference, the simulated isotherm curve agreed well with the experimentally 

measured result.  

 The obvious conclusion from this data is that the calcination temperature of the solid 

solutions affects the thermodynamic redox properties primarily through the changes in the phases 

that are formed. This is very significant in that high-temperature calcination also changes the 

crystallite size and sample surface areas. One should certainly expect that changes in the 

crystallite size would affect the kinetics of reduction and oxidation. 

Conclusions: 

 The following observations can be drawn from this study:  

1) The thermodynamic redox properties of ceria-zirconia solid solutions depend primarily 

on the composition of the oxides, rather that the oxide surface areas or crystallite sizes. 

When solid solutions were calcined to temperatures sufficient to cause phase separation, 

the thermodynamic properties were the same as would be expected for a physical mixture 

of the two phases. 

2) The oxidation enthalpies for all the ceria-zirconia solid solutions that were studied were 

independent of the extent of cerium reduction and between -500 and -550 kJ/mol O2, a 

value similar to that found for oxidation of the pyrochlore, Ce2Zr2O7. The oxidation 

entropies depended on sample composition and the extent of ceria reduction. 
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3) The thermodynamic properties for oxidation of ceria-zirconia solid solutions can be 

understood from a simple model that considers the energetics of removing an oxygen to 

be related only to the four nearest-neighbor metal cations. The oxidation entropies are 

affected by the number of possible oxygens that can be removed from a particular 

structure. 
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Table 1. 

Sample Calcination temp.* 
(K) 

Crystalline size
(Å) 

Lattice constant 
(Å) 

CZ100/0 
723 
973 
1173 

158 
- 
1086 

5.4171 (5.4124 a) 
· 
5.4149 

CZ 92/8 973 
1323 

135 
669 

5.3997 (5.3945 a) 
5.3957 

CZ 81/19 973 
1323 

174 
543 

5.3693 (5.3648 a) 
5.3662 

CZ 59/41 973 
1323 

181 
362 

5.3056 ((5.3054 a) 
- 

CZ 50/50 973 168 5.2852 (5.2811 a) 

CZ 25/75 973 
1323 

102 
- 

5.2018 
- 

CZ 14/86 973 
1323 

84 
258 

5.1589 
- 

*The samples were calcined at 723 K for 5 hr, 973 K for 48 hr and at 1323 K for 4 hr. 
a The lattice parameters calculated by Vegard’s rule using the values from JCPDS file. 
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Table 2. 

Flow System Experiment Coulometric Titration Temperature 
(K) log(P(O2) atm) H2O/(H2+H2O) %a log(P(O2) atm) 

-28.9 0.3b 
-28.3 0.6 
-27.9 1 
-26.9 3 
-25.8 10 
-24.6 30 

873 

-23.9 50 

-21 ~ -14 

-25.9 0.3 
-25.3 0.6 
-24.8 1 
-23.9 3 
-22.7 10 
-21.6 30 

973 

-20.8 50 

-17 ~ -2 

-23.4 0.3 
-22.8 0.6 
-22.3 1 
-21.4 3 
-20.3 10 
-19.1 30 

1073 

-18.4 50 

-15 ~ -2 

a H2O is provided by flow pure H2 through a bubbler of which the temperature is controlled. 
b An additional pure H2 line is used to dilute the H2O content 
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Table 3. 

Sample x in CeyZr1-yO2-x - ∆H (kJ/mol-O2) - ∆S (J/mol-O2/K) 

0.05 783 325 
0.07 775 312 
0.10 760 291 
0.13 820 348 

CeO2-x 

0.16 797 317 
0.20 536 62 
0.17 519 65 
0.15 519 75 
0.12 520 90 
0.10 528 109 
0.07 546 221 
0.05 518 227 

Ce0.81Zr0.19O2-x 

0.04 506 235 
0.20 527 79 
0.19 514 71 
0.19 512 72 
0.18 500 63 
0.17 486 55 

Ce0.5Zr0.5O2-x 

0.15 476 58 
0.07 577 252 
0.06 560 249 
0.05 534 233 
0.04 524 236 

Ce0.25Zr0.75O2-x 

0.03 507 237 
0.08 497 19 
0.08 486 13 
0.07 477 16 
0.07 476 24 
0.06 467 21 
0.06 453 14 

Ce0.14Zr0.86O2-x 

0.06 451 21 
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Figure 1. XRD for CeyZr1-yO2 solutions following calcination at 973 K. a) y=1,  b) y=0.81, c) 
y=0.5, d) y=0.33, e) y=0.25, and f) y=0.14. The inset shows an expanded view of  (220) peak for 
each sample. 
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Figure 2. XRD patterns of CeyZr1-yO2 solutions that have been calcined at 1323 K for 4 hours. a) 
y=0.81,  b) y=0.59, c) y=0.33, d) y=0.14. The inset shows an expanded view of (220) peak for 
each sample. 
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Figure 3. Oxygen to total metal (Ce+Zr) ratios for the Ce Zr yO x samples, following 

 (○) y=1, 
y 1- 2-

calcination at 973 K, as a function of P(O2). The y values in the samples are as follows:
(∆) y=0.92, (□) y=81, (◊) y=0.59, (+) y=0.5, (Θ) y=0.25, (x) y=0.14, and (∇) y=1.0. The closed 
symbols for y=0.08 (▲) were obtained from the sample after calcination at 1323 K for 4 h. 
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igure 4a). Oxygen-to-total-metal (Ce+Zr) ratio for Ce0.81Zr0.19O2-x as a function of P(O ) and F 2

temperature  (■ 873K, ▲ 973K, ● 1073K). Open symbols denote data from Coulometric titration 

and closed symbols denote data from flow system experiments.  
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Figure 4b). Oxygen-to-total-metal (Ce+Zr) ratio for Ce0.5Zr0.5O2 as a function of P(O2) and 
temperature (■ 873K, ▲ 973K, ● 1073K). 
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Figure 4c). Oxygen-to-total-metal (Ce+Zr) ratio for Ce0.25Zr0.75O2-x as a function of P(O ) and 2

temperature (■ 873K, ▲ 973K, ● 1073K). Open symbols denote data from Coulometric titration 

and closed symbols denote data from flow system experiments.  
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Figure 4d). Oxygen-to-total-metal (Ce+Zr) ratio for 1wt% Pd on Ce0.14Zr0.86O2 as a function of 
P(O2) and temperature (■ 873K, ▲ 973K, ● 1073K). The open symbol (∆) was obtained on the 
Ce0.14Zr0.86O2 with no Pd at 973 K.  
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Figure 5. ∆H of oxidation at 973 K for CeyZr1-yO2-x as a function of extent of reduction. (○) y=1, 
(□) y=0.81, (◊) y=0.5, (Δ) y=0.25, and (∇) y=0.14.  
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Fig. 6. ∆S of oxidation at 973 K for CeyZr1-yO2-x as a function of extent of reduction. (●) y=1, (■) 
y =0.81 (♦) y=0.5, (▲) y=0.25, and (▼) y=0.14. 
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Figure 7a). O/M ratios as a function of P(O2) for  (□)Ce0.14Zr0.86O2 sample after calcination for 4 
hours at 973 K (□) and 1323 K (■). 
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Figure 7b). O/M ratios as a function of P(O2) for the Ce0.59Zr0.41O2 sample after calcination for 4 
hours at 973 K (□) and 1323 K (■). The simulated result (---) was calculated by assuming the 
sample calcined to 1323 K could be modeled as a physical mixture of Ce0.81Zr0.19O2 and 
Ce0.13Zr0.87O2. 
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Figure 7c). O/M ratios as a function of P(O2) for the Ce0.33Zr0.67O2 sample after calcination for 4 
hours at 973 K (□) and 1323 K (■). The simulated result (---) was calculated by assuming the 
sample calcined to 1323 K could be modeled as a physical mixture of Ce0.81Zr0.19O2 and 
Ce0.25Zr0.75O2. 
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