89 research outputs found

    Check on the features of potted 20-inch PMTs with 1F3 electronics prototype at Pan-Asia

    Full text link
    The Jiangmen underground neutrino observatory (JUNO) is a neutrino project with a 20-kton liquid scintillator detector located at 700-m underground. The large 20-inch PMTs are one of the crucial components of the JUNO experiment aiming to precision neutrino measurements with better than 3% energy resolution at 1 MeV. The excellent energy resolution and a large fiducial volume provide many exciting opportunities for addressing important topics in neutrino and astro-particle physics. With the container #D at JUNO Pan-Asia PMT testing and potting station, the features of waterproof potted 20-inch PMTs were measured with JUNO 1F3 electronics prototype in waveform and charge, which are valuable for better understanding on the performance of the waterproof potted PMTs and the JUNO 1F3 electronics. In this paper, basic features of JUNO 1F3 electronics prototype run at Pan-Asia will be introduced, followed by an analysis of the waterproof potted 20-inch PMTs and a comparison with the results from commercial electronics used by the container #A and #B

    Validation and integration tests of the JUNO 20-inch PMTs readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. JUNO will be able to study the neutrino mass ordering and to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range, spanning from 200 keV to several GeV. Given the ambitious physics goals of JUNO, the electronic system has to meet specific tight requirements, and a thorough characterization is required. The present paper describes the tests performed on the readout modules to measure their performances.Comment: 20 pages, 13 figure

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume III: DUNE Far Detector Technical Coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 2 describes the single-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure
    corecore