1,410 research outputs found
Conversations with Each Other: Love Songs to the Earth
Conversation is a complicated, ever-changing, and dynamic space—a space which is foundational to both education and curriculum, broadly conceived. In this article, we continue our ongoing conversion through the notion of writing love songs to the Earth and to each other. Within the conversation, Gonen shares original poetry emergent from his lived experiences, while Adrian attends to Gonen’s poetry in prosaic response. In this, the socio-political moment of the Canadian movement toward reconciliation between Indigenous and non-Indigenous peoples, we view our relationship and our conversations as speaking back to the competitive languages of diasporic space and Indigenous place through an emphasis on our mutual, though diverse, humanity. Far from a conclusive conversation, we offer our mutual and respective engagements with life’s curriculum, the world, and with words in the hope that these insights will resonate with other educators
Modeling truncated pixel values of faint reflections in MicroED images.
The weak pixel counts surrounding the Bragg spots in a diffraction image are important for establishing a model of the background underneath the peak and estimating the reliability of the integrated intensities. Under certain circumstances, particularly with equipment not optimized for low-intensity measurements, these pixel values may be corrupted by corrections applied to the raw image. This can lead to truncation of low pixel counts, resulting in anomalies in the integrated Bragg intensities, such as systematically higher signal-to-noise ratios. A correction for this effect can be approximated by a three-parameter lognormal distribution fitted to the weakly positive-valued pixels at similar scattering angles. The procedure is validated by the improved refinement of an atomic model against structure factor amplitudes derived from corrected micro-electron diffraction (MicroED) images
High-resolution DCE-MRI of the pituitary gland using radial k-space acquisition with compressed sensing reconstruction
BACKGROUND AND PURPOSE: The pituitary gland is located outside of the blood-brain barrier. Dynamic T1 weighted contrast enhanced sequence is considered to be the gold standard to evaluate this region. However, it does not allow assessment of intrinsic permeability properties of the gland. Our aim was to demonstrate the utility of radial volumetric interpolated brain examination with the golden-angle radial sparse parallel technique to evaluate permeability characteristics of the individual components (anterior and posterior gland and the median eminence) of the pituitary gland and areas of differential enhancement and to optimize the study acquisition time.
MATERIALS AND METHODS: A retrospective study was performed in 52 patients (group 1, 25 patients with normal pituitary glands; and group 2, 27 patients with a known diagnosis of microadenoma). Radial volumetric interpolated brain examination sequences with goldenangle radial sparse parallel technique were evaluated with an ROI-based method to obtain signal-time curves and permeability measures of individual normal structures within the pituitary gland and areas of differential enhancement. Statistical analyses were performed to assess differences in the permeability parameters of these individual regions and optimize the study acquisition time.
RESULTS: Signal-time curves from the posterior pituitary gland and median eminence demonstrated a faster wash-in and time of
maximum enhancement with a lower peak of enhancement compared with the anterior pituitary gland (P .005). Time-optimization
analysis demonstrated that 120 seconds is ideal for dynamic pituitary gland evaluation. In the absence of a clinical history, differences in the signal-time curves allow easy distinction between a simple cyst and a microadenoma.
CONCLUSIONS: This retrospective study confirms the ability of the golden-angle radial sparse parallel technique to evaluate the
permeability characteristics of the pituitary gland and establishes 120 seconds as the ideal acquisition time for dynamic pituitary gland
imaging
MicroED data collection and processing.
MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges
Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs
For a graph , let be the partition function of the
monomer-dimer system defined by , where is the
number of matchings of size in . We consider graphs of bounded degree
and develop a sublinear-time algorithm for estimating at an
arbitrary value within additive error with high
probability. The query complexity of our algorithm does not depend on the size
of and is polynomial in , and we also provide a lower bound
quadratic in for this problem. This is the first analysis of a
sublinear-time approximation algorithm for a # P-complete problem. Our
approach is based on the correlation decay of the Gibbs distribution associated
with . We show that our algorithm approximates the probability
for a vertex to be covered by a matching, sampled according to this Gibbs
distribution, in a near-optimal sublinear time. We extend our results to
approximate the average size and the entropy of such a matching within an
additive error with high probability, where again the query complexity is
polynomial in and the lower bound is quadratic in .
Our algorithms are simple to implement and of practical use when dealing with
massive datasets. Our results extend to other systems where the correlation
decay is known to hold as for the independent set problem up to the critical
activity
Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a Chemogenomics Approach
Virtual screening (VS) is widely used during computational drug discovery to
reduce costs. Chemogenomics-based virtual screening (CGBVS) can be used to
predict new compound-protein interactions (CPIs) from known CPI network data
using several methods, including machine learning and data mining. Although
CGBVS facilitates highly efficient and accurate CPI prediction, it has poor
performance for prediction of new compounds for which CPIs are unknown. The
pairwise kernel method (PKM) is a state-of-the-art CGBVS method and shows high
accuracy for prediction of new compounds. In this study, on the basis of link
mining, we improved the PKM by combining link indicator kernel (LIK) and
chemical similarity and evaluated the accuracy of these methods. The proposed
method obtained an average area under the precision-recall curve (AUPR) value
of 0.562, which was higher than that achieved by the conventional Gaussian
interaction profile (GIP) method (0.425), and the calculation time was only
increased by a few percent
Coupling multiple views of relations for recommendation
© Springer International Publishing Switzerland 2015. Learning user/item relation is a key issue in recommender system, and existing methods mostly measure the user/item relation from one particular aspect, e.g., historical ratings, etc. However, the relations between users/items could be influenced by multifaceted factors, so any single type of measure could get only a partial view of them. Thus it is more advisable to integrate measures from different aspects to estimate the underlying user/item relation. Furthermore, the estimation of underlying user/item relation should be optimal for current task. To this end, we propose a novel model to couple multiple relations measured on different aspects, and determine the optimal user/item relations via learning the optimal way of integrating these relation measures. Specifically, matrix factorization model is extended in this paper by considering the relations between latent factors of different users/items. Experiments are conducted and our method shows good performance and outperforms other baseline methods
Serial whole-brain N-acetylaspartate concentration in healthy young adults
SUMMARY: Although the concentration of N -acetylaspartate (NAA) is often used as a neuronal integrity marker, its normal temporal variations are not well documented. To assess them over the 1–2 year periods of typical clinical trials, the whole-brain NAA concentration was measured longitudinally, over 4 years, in a cohort of healthy young adults. No significant change (adjusted for both sex and age) was measured either interpersonally or intrapersonally over the entire duration of the study
- …