1,771 research outputs found

    Modeling truncated pixel values of faint reflections in MicroED images.

    Get PDF
    The weak pixel counts surrounding the Bragg spots in a diffraction image are important for establishing a model of the background underneath the peak and estimating the reliability of the integrated intensities. Under certain circumstances, particularly with equipment not optimized for low-intensity measurements, these pixel values may be corrupted by corrections applied to the raw image. This can lead to truncation of low pixel counts, resulting in anomalies in the integrated Bragg intensities, such as systematically higher signal-to-noise ratios. A correction for this effect can be approximated by a three-parameter lognormal distribution fitted to the weakly positive-valued pixels at similar scattering angles. The procedure is validated by the improved refinement of an atomic model against structure factor amplitudes derived from corrected micro-electron diffraction (MicroED) images

    MicroED data collection and processing.

    Get PDF
    MicroED, a method at the intersection of X-ray crystallography and electron cryo-microscopy, has rapidly progressed by exploiting advances in both fields and has already been successfully employed to determine the atomic structures of several proteins from sub-micron-sized, three-dimensional crystals. A major limiting factor in X-ray crystallography is the requirement for large and well ordered crystals. By permitting electron diffraction patterns to be collected from much smaller crystals, or even single well ordered domains of large crystals composed of several small mosaic blocks, MicroED has the potential to overcome the limiting size requirement and enable structural studies on difficult-to-crystallize samples. This communication details the steps for sample preparation, data collection and reduction necessary to obtain refined, high-resolution, three-dimensional models by MicroED, and presents some of its unique challenges

    Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs

    Full text link
    For a graph GG, let Z(G,λ)Z(G,\lambda) be the partition function of the monomer-dimer system defined by kmk(G)λk\sum_k m_k(G)\lambda^k, where mk(G)m_k(G) is the number of matchings of size kk in GG. We consider graphs of bounded degree and develop a sublinear-time algorithm for estimating logZ(G,λ)\log Z(G,\lambda) at an arbitrary value λ>0\lambda>0 within additive error ϵn\epsilon n with high probability. The query complexity of our algorithm does not depend on the size of GG and is polynomial in 1/ϵ1/\epsilon, and we also provide a lower bound quadratic in 1/ϵ1/\epsilon for this problem. This is the first analysis of a sublinear-time approximation algorithm for a # P-complete problem. Our approach is based on the correlation decay of the Gibbs distribution associated with Z(G,λ)Z(G,\lambda). We show that our algorithm approximates the probability for a vertex to be covered by a matching, sampled according to this Gibbs distribution, in a near-optimal sublinear time. We extend our results to approximate the average size and the entropy of such a matching within an additive error with high probability, where again the query complexity is polynomial in 1/ϵ1/\epsilon and the lower bound is quadratic in 1/ϵ1/\epsilon. Our algorithms are simple to implement and of practical use when dealing with massive datasets. Our results extend to other systems where the correlation decay is known to hold as for the independent set problem up to the critical activity

    Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a Chemogenomics Approach

    Full text link
    Virtual screening (VS) is widely used during computational drug discovery to reduce costs. Chemogenomics-based virtual screening (CGBVS) can be used to predict new compound-protein interactions (CPIs) from known CPI network data using several methods, including machine learning and data mining. Although CGBVS facilitates highly efficient and accurate CPI prediction, it has poor performance for prediction of new compounds for which CPIs are unknown. The pairwise kernel method (PKM) is a state-of-the-art CGBVS method and shows high accuracy for prediction of new compounds. In this study, on the basis of link mining, we improved the PKM by combining link indicator kernel (LIK) and chemical similarity and evaluated the accuracy of these methods. The proposed method obtained an average area under the precision-recall curve (AUPR) value of 0.562, which was higher than that achieved by the conventional Gaussian interaction profile (GIP) method (0.425), and the calculation time was only increased by a few percent

    Coupling multiple views of relations for recommendation

    Full text link
    © Springer International Publishing Switzerland 2015. Learning user/item relation is a key issue in recommender system, and existing methods mostly measure the user/item relation from one particular aspect, e.g., historical ratings, etc. However, the relations between users/items could be influenced by multifaceted factors, so any single type of measure could get only a partial view of them. Thus it is more advisable to integrate measures from different aspects to estimate the underlying user/item relation. Furthermore, the estimation of underlying user/item relation should be optimal for current task. To this end, we propose a novel model to couple multiple relations measured on different aspects, and determine the optimal user/item relations via learning the optimal way of integrating these relation measures. Specifically, matrix factorization model is extended in this paper by considering the relations between latent factors of different users/items. Experiments are conducted and our method shows good performance and outperforms other baseline methods

    The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination

    Get PDF
    In the many scientific endeavors that are driven by organic chemistry, unambiguous identification of small molecules is of paramount importance. Over the past 50 years, NMR and other powerful spectroscopic techniques have been developed to address this challenge. While almost all of these techniques rely on inference of connectivity, the unambiguous determination of a small molecule’s structure requires X-ray and/or neutron diffraction studies. In practice, however, X-ray crystallography is rarely applied in routine organic chemistry due to intrinsic limitations of both the analytes and the technique. Here we report the use of the electron cryo-microscopy (cryoEM) method microcrystal electron diffraction (MicroED) to provide routine and unambiguous structural determination of small organic molecules. From simple powders, with minimal sample preparation, we could collect high-quality MicroED data from nanocrystals (∼100 nm, ∼10^(–15) g) resulting in atomic resolution (<1 Å) crystal structures in minutes

    Cancer-testis gene expression is associated with the methylenetetrahydrofolate reductase 677 C>T polymorphism in non-small cell lung carcinoma

    Get PDF
    Background: Tumor-specific, coordinate expression of cancer-testis (CT) genes, mapping to the X chromosome, is observed in more than 60% of non-small cell lung cancer (NSCLC) patients. Although CT gene expression has been unequivocally related to DNA demethylation of promoter regions, the underlying mechanism leading to loss of promoter methylation remains elusive. Polymorphisms of enzymes within the 1-carbon pathway have been shown to affect S-adenosyl methionine (SAM) production, which is the sole methyl donor in the cell. Allelic variants of several enzymes within this pathway have been associated with altered SAM levels either directly, or indirectly as reflected by altered levels of SAH and Homocysteine levels, and altered levels of DNA methylation. We, therefore, asked whether the five most commonly occurring polymorphisms in four of the enzymes in the 1-carbon pathway associated with CT gene expression status in patients with NSCLC.Methods: Fifty patients among a cohort of 763 with NSCLC were selected based on CT gene expression status and typed for five polymorphisms in four genes known to affect SAM generation by allele specific q-PCR and RFLP.Results: We identified a significant association between CT gene expression and the MTHFR 677 CC genotype, as well as the C allele of the SNP, in this cohort of patients. Multivariate analysis revealed that the genotype and allele strongly associate with CT gene expression, independent of potential confounders.Conclusions: Although CT gene expression is associated with DNA demethylation, in NSCLC, our data suggests this is unlikely to be the result of decreased MTHFR function. © 2013 Senses et al.; licensee BioMed Central Ltd
    corecore