23 research outputs found

    Characteristics of adults with type 1 diabetes and treatment-resistant problematic hypoglycaemia: a baseline analysis from the HARPdoc RCT

    Get PDF
    Aims/hypothesis Problematic hypoglycaemia still complicates insulin therapy for some with type 1 diabetes. This study describes baseline emotional, cognitive and behavioural characteristics in participants in the HARPdoc trial, which evaluates a novel intervention for treatment-resistant problematic hypoglycaemia. Methods We documented a cross-sectional baseline description of 99 adults with type 1 diabetes and problematic hypoglycaemia despite structured education in flexible insulin therapy. The following measures were included: Hypoglycaemia Fear Survey II (HFS-II); Attitudes to Awareness of Hypoglycaemia questionnaire (A2A); Hospital Anxiety and Depression Index; and Problem Areas In Diabetes. k-mean cluster analysis was applied to HFS-II and A2A factors. Data were compared with a peer group without problematic hypoglycaemia, propensity-matched for age, sex and diabetes duration (n = 81). Results The HARPdoc cohort had long-duration diabetes (mean ± SD 35.8 ± 15.4 years), mean ± SD Gold score 5.3 ± 1.2 and a median (IQR) of 5.0 (2.0–12.0) severe hypoglycaemia episodes in the previous year. Most individuals had been offered technology and 49.5% screened positive for anxiety (35.0% for depression and 31.3% for high diabetes distress). The cohort segregated into two clusters: in one (n = 68), people endorsed A2A cognitive barriers to hypoglycaemia avoidance, with low fear on HFS-II factors; in the other (n = 29), A2A factor scores were low and HFS-II high. Anxiety and depression scores were significantly lower in the comparator group. Conclusions/interpretation The HARPdoc protocol successfully recruited people with treatment-resistant problematic hypoglycaemia. The participants had high anxiety and depression. Most of the cohort endorsed unhelpful health beliefs around hypoglycaemia, with low fear of hypoglycaemia, a combination that may contribute to persistence of problematic hypoglycaemia and may be a target for adjunctive psychological therapies

    Fear of hypoglycaemia: defining a minimum clinically important difference in patients with type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To explore the concept of the Minimum Clinically Important Difference (MID) of the Worry Scale of the Hypoglycaemia Fear Survey (HFS-II) and to quantify the clinical importance of different types of patient-reported hypoglycaemia.</p> <p>Methods</p> <p>An observational study was conducted in Germany with 392 patients with type 2 diabetes mellitus treated with combinations of oral anti-hyperglycaemic agents. Patients completed the HFS-II, the Treatment Satisfaction Questionnaire for Medication (TSQM), and reported on severity of hypoglycaemia. Distribution- and anchor-based methods were used to determine MID. In turn, MID was used to determine if hypoglycaemia with or without need for assistance was clinically meaningful compared to having had no hypoglycaemia.</p> <p>Results</p> <p>112 patients (28.6%) reported hypoglycaemic episodes, with 15 patients (3.8%) reporting episodes that required assistance from others. Distribution- and anchor-based methods resulted in MID between 2.0 and 5.8 and 3.6 and 3.9 for the HFS-II, respectively. Patients who reported hypoglycaemia with (21.6) and without (12.1) need for assistance scored higher on the HFS-II (range 0 to 72) than patients who did not report hypoglycaemia (6.0).</p> <p>Conclusion</p> <p>We provide MID for HFS-II. Our findings indicate that the differences between having reported no hypoglycaemia, hypoglycaemia without need for assistance, and hypoglycaemia with need for assistance appear to be clinically important in patients with type 2 diabetes mellitus treated with oral anti-hyperglycaemic agents.</p

    Consensus Recommendations for the Use of Automated Insulin Delivery (AID) Technologies in Clinical Practice

    Get PDF
    International audienceThe significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past six years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage

    Bio-Behavioral Changes Following Transition to Automated Insulin Delivery: A Large Real-Life Database Analysis

    No full text
       Objective: Document glycemic and user-initiated bolus changes following transition from predictive-low glucose suspend (PLGS) system to automated insulin delivery (AID) system during real-life use. Research Design and Methods: Analysis of 2,329,166 days (6,381 patient-years) of continuous glucose monitoring (CGM) and insulin therapy data for 19,354 individuals with Type 1 Diabetes, during 1-month PLGS (Basal-IQ technology) use followed by 3-month AID use (Control-IQ technology). Baseline characteristics: 55.4 percent female, age (median/quartiles/range) 39/19-58/1-92 years, glucose management indicator (GMI) 7.5±0.8. Primary outcome: time in target range (TIR 70-180mg/dL). Secondary outcomes: CGM-based glycemic control metrics; frequency of user-initiated boluses. Results: Compared to PLGS, AID increased TIR on average from 58.4 to 70.5 percent. GMI and percent time above/below target range improved as well, 7.5 to 7.1; 39.9 to 28.1 percent, and 1.66 to 1.46 percent, respectively, all p-levels 8.0 (TIR improvement 13.2 percentage points). User-initiated correction boluses decreased from 2.7 to 1.8 per day, while user-initiated meal boluses remained stable at 3.6 to 3.8 per day. Conclusions: Observed in real life of over 19,000 individuals with type 1 diabetes, transitions from PLGS to AID resulted in improvement of all glycemic parameters, equivalent to improvements observed in randomized clinical trials, and reduced user-initiated boluses.  However, glycemic and behavioral changes with AID use may differ greatly across different demographic and clinical groups. </p
    corecore