276 research outputs found

    Physical and chemical test results of electrostatic safe flooring materials

    Get PDF
    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results

    Blow-up of generalized complex 4-manifolds

    Full text link
    We introduce blow-up and blow-down operations for generalized complex 4-manifolds. Combining these with a surgery analogous to the logarithmic transform, we then construct generalized complex structures on nCP2 # m \bar{CP2} for n odd, a family of 4-manifolds which admit neither complex nor symplectic structures unless n=1. We also extend the notion of a symplectic elliptic Lefschetz fibration, so that it expresses a generalized complex 4-manifold as a fibration over a two-dimensional manifold with boundary.Comment: 25 pages, 15 figures. This is the final version, which was published in J. To

    Localized Exotic Smoothness

    Full text link
    Gompf's end-sum techniques are used to establish the existence of an infinity of non-diffeomorphic manifolds, all having the same trivial R4{\bf R^4} topology, but for which the exotic differentiable structure is confined to a region which is spatially limited. Thus, the smoothness is standard outside of a region which is topologically (but not smoothly) B3×R1{\bf B^3}\times {\bf R^1}, where B3{\bf B^3} is the compact three ball. The exterior of this region is diffeomorphic to standard R1×S2×R1{\bf R^1}\times {\bf S^2}\times{\bf R^1}. In a space-time diagram, the confined exoticness sweeps out a world tube which, it is conjectured, might act as a source for certain non-standard solutions to the Einstein equations. It is shown that smooth Lorentz signature metrics can be globally continued from ones given on appropriately defined regions, including the exterior (standard) region. Similar constructs are provided for the topology, S2×R2{\bf S^2}\times {\bf R^2} of the Kruskal form of the Schwarzschild solution. This leads to conjectures on the existence of Einstein metrics which are externally identical to standard black hole ones, but none of which can be globally diffeomorphic to such standard objects. Certain aspects of the Cauchy problem are also discussed in terms of RΘ4{\bf R^4_\Theta}\models which are ``half-standard'', say for all t<0,t<0, but for which tt cannot be globally smooth.Comment: 8 pages plus 6 figures, available on request, IASSNS-HEP-94/2

    Exotic Smoothness and Physics

    Get PDF
    The essential role played by differentiable structures in physics is reviewed in light of recent mathematical discoveries that topologically trivial space-time models, especially the simplest one, R4{\bf R^4}, possess a rich multiplicity of such structures, no two of which are diffeomorphic to each other and thus to the standard one. This means that physics has available to it a new panoply of structures available for space-time models. These can be thought of as source of new global, but not properly topological, features. This paper reviews some background differential topology together with a discussion of the role which a differentiable structure necessarily plays in the statement of any physical theory, recalling that diffeomorphisms are at the heart of the principle of general relativity. Some of the history of the discovery of exotic, i.e., non-standard, differentiable structures is reviewed. Some new results suggesting the spatial localization of such exotic structures are described and speculations are made on the possible opportunities that such structures present for the further development of physical theories.Comment: 13 pages, LaTe

    An invariant of smooth 4-manifolds

    Full text link
    We define a diffeomorphism invariant of smooth 4-manifolds which we can estimate for many smoothings of R^4 and other smooth 4-manifolds. Using this invariant we can show that uncountably many smoothings of R^4 support no Stein structure. (Gompf has constructed uncountably many smoothings of R^4 which do support Stein structures.) Other applications of this invariant are given.Comment: 19 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol1/paper6.abs.htm

    Topology of multiple log transforms of 4-manifolds

    Full text link
    Given a 4-manifold X and an imbedding of T^{2} x B^2 into X, we describe an algorithm X --> X_{p,q} for drawing the handlebody of the 4-manifold obtained from X by (p,q)-logarithmic transforms along the parallel tori. By using this algorithm, we obtain a simple handle picture of the Dolgachev surface E(1)_{p,q}, from that we deduce that the exotic copy E(1)_{p,q} # 5(-CP^2) of E(1) # 5(-CP^2) differs from the original one by a codimension zero simply connected Stein submanifold M_{p,q}, which are therefore examples of infinitely many Stein manifolds that are exotic copies of each other (rel boundaries). Furthermore, by a similar method we produce infinitely many simply connected Stein submanifolds Z_{p} of E(1)_{p,2} # 2(-CP^2)$ with the same boundary and the second Betti number 2, which are (absolutely) exotic copies of each other; this provides an alternative proof of a recent theorem of the author and Yasui [AY4]. Also, by using the description of S^2 x S^2 as a union of two cusps glued along their boundaries, and by using this algorithm, we show that multiple log transforms along the tori in these cusps do not change smooth structure of S^2 x S^2.Comment: Updated, with 17 pages 21 figure

    Exotic smooth structures on 4-manifolds with zero signature

    Full text link
    For every integer k2k\geq 2, we construct infinite families of mutually nondiffeomorphic irreducible smooth structures on the topological 44-manifolds (2k1)(S2×S2)(2k-1)(S^2\times S^2) and (2k-1)(\CP#\CPb), the connected sums of 2k12k-1 copies of S2×S2S^2\times S^2 and \CP#\CPb.Comment: 6 page

    On the geometrization of matter by exotic smoothness

    Full text link
    In this paper we discuss the question how matter may emerge from space. For that purpose we consider the smoothness structure of spacetime as underlying structure for a geometrical model of matter. For a large class of compact 4-manifolds, the elliptic surfaces, one is able to apply the knot surgery of Fintushel and Stern to change the smoothness structure. The influence of this surgery to the Einstein-Hilbert action is discussed. Using the Weierstrass representation, we are able to show that the knotted torus used in knot surgery is represented by a spinor fulfilling the Dirac equation and leading to a mass-less Dirac term in the Einstein-Hilbert action. For sufficient complicated links and knots, there are "connecting tubes" (graph manifolds, torus bundles) which introduce an action term of a gauge field. Both terms are genuinely geometrical and characterized by the mean curvature of the components. We also discuss the gauge group of the theory to be U(1)xSU(2)xSU(3).Comment: 30 pages, 3 figures, svjour style, complete reworking now using Fintushel-Stern knot surgery of elliptic surfaces, discussion of Lorentz metric and global hyperbolicity for exotic 4-manifolds added, final version for publication in Gen. Rel. Grav, small typos errors fixe

    Fake R^4's, Einstein Spaces and Seiberg-Witten Monopole Equations

    Full text link
    We discuss the possible relevance of some recent mathematical results and techniques on four-manifolds to physics. We first suggest that the existence of uncountably many R^4's with non-equivalent smooth structures, a mathematical phenomenon unique to four dimensions, may be responsible for the observed four-dimensionality of spacetime. We then point out the remarkable fact that self-dual gauge fields and Weyl spinors can live on a manifold of Euclidean signature without affecting the metric. As a specific example, we consider solutions of the Seiberg-Witten Monopole Equations in which the U(1) fields are covariantly constant, the monopole Weyl spinor has only a single constant component, and the 4-manifold M_4 is a product of two Riemann surfaces Sigma_{p_1} and Sigma_{p_2}. There are p_{1}-1(p_{2}-1) magnetic(electric) vortices on \Sigma_{p_1}(\Sigma_{p_2}), with p_1 + p_2 \geq 2 (p_1=p_2= 1 being excluded). When the two genuses are equal, the electromagnetic fields are self-dual and one obtains the Einstein space \Sigma_p x \Sigma_p, the monopole condensate serving as the cosmological constant.Comment: 9 pages, Talk at the Second Gursey Memorial Conference, June 2000, Istanbu
    corecore