276 research outputs found
Physical and chemical test results of electrostatic safe flooring materials
This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results
Blow-up of generalized complex 4-manifolds
We introduce blow-up and blow-down operations for generalized complex
4-manifolds. Combining these with a surgery analogous to the logarithmic
transform, we then construct generalized complex structures on nCP2 # m
\bar{CP2} for n odd, a family of 4-manifolds which admit neither complex nor
symplectic structures unless n=1. We also extend the notion of a symplectic
elliptic Lefschetz fibration, so that it expresses a generalized complex
4-manifold as a fibration over a two-dimensional manifold with boundary.Comment: 25 pages, 15 figures. This is the final version, which was published
in J. To
Localized Exotic Smoothness
Gompf's end-sum techniques are used to establish the existence of an infinity
of non-diffeomorphic manifolds, all having the same trivial
topology, but for which the exotic differentiable structure is confined to a
region which is spatially limited. Thus, the smoothness is standard outside of
a region which is topologically (but not smoothly) ,
where is the compact three ball. The exterior of this region is
diffeomorphic to standard . In a
space-time diagram, the confined exoticness sweeps out a world tube which, it
is conjectured, might act as a source for certain non-standard solutions to the
Einstein equations. It is shown that smooth Lorentz signature metrics can be
globally continued from ones given on appropriately defined regions, including
the exterior (standard) region. Similar constructs are provided for the
topology, of the Kruskal form of the Schwarzschild
solution. This leads to conjectures on the existence of Einstein metrics which
are externally identical to standard black hole ones, but none of which can be
globally diffeomorphic to such standard objects. Certain aspects of the Cauchy
problem are also discussed in terms of \models which are
``half-standard'', say for all but for which cannot be globally
smooth.Comment: 8 pages plus 6 figures, available on request, IASSNS-HEP-94/2
Exotic Smoothness and Physics
The essential role played by differentiable structures in physics is reviewed
in light of recent mathematical discoveries that topologically trivial
space-time models, especially the simplest one, , possess a rich
multiplicity of such structures, no two of which are diffeomorphic to each
other and thus to the standard one. This means that physics has available to it
a new panoply of structures available for space-time models. These can be
thought of as source of new global, but not properly topological, features.
This paper reviews some background differential topology together with a
discussion of the role which a differentiable structure necessarily plays in
the statement of any physical theory, recalling that diffeomorphisms are at the
heart of the principle of general relativity. Some of the history of the
discovery of exotic, i.e., non-standard, differentiable structures is reviewed.
Some new results suggesting the spatial localization of such exotic structures
are described and speculations are made on the possible opportunities that such
structures present for the further development of physical theories.Comment: 13 pages, LaTe
An invariant of smooth 4-manifolds
We define a diffeomorphism invariant of smooth 4-manifolds which we can
estimate for many smoothings of R^4 and other smooth 4-manifolds. Using this
invariant we can show that uncountably many smoothings of R^4 support no Stein
structure. (Gompf has constructed uncountably many smoothings of R^4 which do
support Stein structures.) Other applications of this invariant are given.Comment: 19 pages. Published copy, also available at
http://www.maths.warwick.ac.uk/gt/GTVol1/paper6.abs.htm
Topology of multiple log transforms of 4-manifolds
Given a 4-manifold X and an imbedding of T^{2} x B^2 into X, we describe an
algorithm X --> X_{p,q} for drawing the handlebody of the 4-manifold obtained
from X by (p,q)-logarithmic transforms along the parallel tori. By using this
algorithm, we obtain a simple handle picture of the Dolgachev surface
E(1)_{p,q}, from that we deduce that the exotic copy E(1)_{p,q} # 5(-CP^2) of
E(1) # 5(-CP^2) differs from the original one by a codimension zero simply
connected Stein submanifold M_{p,q}, which are therefore examples of infinitely
many Stein manifolds that are exotic copies of each other (rel boundaries).
Furthermore, by a similar method we produce infinitely many simply connected
Stein submanifolds Z_{p} of E(1)_{p,2} # 2(-CP^2)$ with the same boundary and
the second Betti number 2, which are (absolutely) exotic copies of each other;
this provides an alternative proof of a recent theorem of the author and Yasui
[AY4]. Also, by using the description of S^2 x S^2 as a union of two cusps
glued along their boundaries, and by using this algorithm, we show that
multiple log transforms along the tori in these cusps do not change smooth
structure of S^2 x S^2.Comment: Updated, with 17 pages 21 figure
Exotic Smooth Structures on Small 4-Manifolds
Let M be either CP^2#3CP^2bar or 3CP^2#5CP^2bar. We construct the first
example of a simply-connected symplectic 4-manifold that is homeomorphic but
not diffeomorphic to M.Comment: 11 page
Exotic smooth structures on 4-manifolds with zero signature
For every integer , we construct infinite families of mutually
nondiffeomorphic irreducible smooth structures on the topological -manifolds
and (2k-1)(\CP#\CPb), the connected sums of
copies of and \CP#\CPb.Comment: 6 page
On the geometrization of matter by exotic smoothness
In this paper we discuss the question how matter may emerge from space. For
that purpose we consider the smoothness structure of spacetime as underlying
structure for a geometrical model of matter. For a large class of compact
4-manifolds, the elliptic surfaces, one is able to apply the knot surgery of
Fintushel and Stern to change the smoothness structure. The influence of this
surgery to the Einstein-Hilbert action is discussed. Using the Weierstrass
representation, we are able to show that the knotted torus used in knot surgery
is represented by a spinor fulfilling the Dirac equation and leading to a
mass-less Dirac term in the Einstein-Hilbert action. For sufficient complicated
links and knots, there are "connecting tubes" (graph manifolds, torus bundles)
which introduce an action term of a gauge field. Both terms are genuinely
geometrical and characterized by the mean curvature of the components. We also
discuss the gauge group of the theory to be U(1)xSU(2)xSU(3).Comment: 30 pages, 3 figures, svjour style, complete reworking now using
Fintushel-Stern knot surgery of elliptic surfaces, discussion of Lorentz
metric and global hyperbolicity for exotic 4-manifolds added, final version
for publication in Gen. Rel. Grav, small typos errors fixe
Fake R^4's, Einstein Spaces and Seiberg-Witten Monopole Equations
We discuss the possible relevance of some recent mathematical results and
techniques on four-manifolds to physics. We first suggest that the existence of
uncountably many R^4's with non-equivalent smooth structures, a mathematical
phenomenon unique to four dimensions, may be responsible for the observed
four-dimensionality of spacetime. We then point out the remarkable fact that
self-dual gauge fields and Weyl spinors can live on a manifold of Euclidean
signature without affecting the metric. As a specific example, we consider
solutions of the Seiberg-Witten Monopole Equations in which the U(1) fields are
covariantly constant, the monopole Weyl spinor has only a single constant
component, and the 4-manifold M_4 is a product of two Riemann surfaces
Sigma_{p_1} and Sigma_{p_2}. There are p_{1}-1(p_{2}-1) magnetic(electric)
vortices on \Sigma_{p_1}(\Sigma_{p_2}), with p_1 + p_2 \geq 2 (p_1=p_2= 1 being
excluded). When the two genuses are equal, the electromagnetic fields are
self-dual and one obtains the Einstein space \Sigma_p x \Sigma_p, the monopole
condensate serving as the cosmological constant.Comment: 9 pages, Talk at the Second Gursey Memorial Conference, June 2000,
Istanbu
- …
