In this paper we discuss the question how matter may emerge from space. For
that purpose we consider the smoothness structure of spacetime as underlying
structure for a geometrical model of matter. For a large class of compact
4-manifolds, the elliptic surfaces, one is able to apply the knot surgery of
Fintushel and Stern to change the smoothness structure. The influence of this
surgery to the Einstein-Hilbert action is discussed. Using the Weierstrass
representation, we are able to show that the knotted torus used in knot surgery
is represented by a spinor fulfilling the Dirac equation and leading to a
mass-less Dirac term in the Einstein-Hilbert action. For sufficient complicated
links and knots, there are "connecting tubes" (graph manifolds, torus bundles)
which introduce an action term of a gauge field. Both terms are genuinely
geometrical and characterized by the mean curvature of the components. We also
discuss the gauge group of the theory to be U(1)xSU(2)xSU(3).Comment: 30 pages, 3 figures, svjour style, complete reworking now using
Fintushel-Stern knot surgery of elliptic surfaces, discussion of Lorentz
metric and global hyperbolicity for exotic 4-manifolds added, final version
for publication in Gen. Rel. Grav, small typos errors fixe