172 research outputs found

    Microspectroscopy and Imaging in the THz Range Using Coherent CW Radiation

    Get PDF
    A novel THz near-field spectrometer is presented which allows to perform biological and medical studies with high spectral resolution combined with a spatial resolution down to l/100. In the setup an aperture much smaller than the used wavelength is placed in the beam very close to the sample. The sample is probed by the evanescent wave behind the aperture. The distance is measured extremely accurate by a confocal microscope. We use monochromatic sources which provide powerful coherent cw radiation tuneable from 50 GHz up to 1.5 THz. Transmission and reflection experiments can be performed which enable us to study solids and molecules in aqueous solution. Examples for spectroscopic investigations on biological tissues are presented.Comment: 4 pages, 5 figures, email: [email protected]

    Commutators, Lefschetz fibrations and the signatures of surface bundles

    Get PDF
    We construct examples of Lefschetz fibrations with prescribed singular fibers. By taking differences of pairs of such fibrations with the same singular fibers, we obtain new examples of surface bundles over surfaces with non-zero signature. From these we derive new upper bounds for the minimal genus of a surface representing a given element in the second homology of a mapping class group.Comment: 20 pages, 7 figures, accepted for publication in Topolog

    New Dimensions for Wound Strings: The Modular Transformation of Geometry to Topology

    Get PDF
    We show, using a theorem of Milnor and Margulis, that string theory on compact negatively curved spaces grows new effective dimensions as the space shrinks, generalizing and contextualizing the results in hep-th/0510044. Milnor's theorem relates negative sectional curvature on a compact Riemannian manifold to exponential growth of its fundamental group, which translates in string theory to a higher effective central charge arising from winding strings. This exponential density of winding modes is related by modular invariance to the infrared small perturbation spectrum. Using self-consistent approximations valid at large radius, we analyze this correspondence explicitly in a broad set of time-dependent solutions, finding precise agreement between the effective central charge and the corresponding infrared small perturbation spectrum. This indicates a basic relation between geometry, topology, and dimensionality in string theory.Comment: 28 pages, harvmac big. v2: references and KITP preprint number added, minor change

    Comment on Mie Scattering from a Sonoluminescing Bubble with High Spatial and Temporal Resolution [Physical Review E 61, 5253 (2000)]

    Full text link
    A key parameter underlying the existence of sonoluminescence (SL)is the time relative to SL at which acoustic energy is radiated from the collapsed bubble. Light scattering is one route to this quantity. We disagree with the statement of Gompf and Pecha that -highly compressed water causes the minimum in scattered light to occur 700ps before SL- and that this effect leads to an overestimate of the bubble wall velocity. We discuss potential artifacts in their experimental arrangement and correct their description of previous experiments on Mie scattering.Comment: 10 pages, 2 figure

    Exotic smooth structures on 4-manifolds with zero signature

    Full text link
    For every integer k2k\geq 2, we construct infinite families of mutually nondiffeomorphic irreducible smooth structures on the topological 44-manifolds (2k1)(S2×S2)(2k-1)(S^2\times S^2) and (2k-1)(\CP#\CPb), the connected sums of 2k12k-1 copies of S2×S2S^2\times S^2 and \CP#\CPb.Comment: 6 page

    Fake R^4's, Einstein Spaces and Seiberg-Witten Monopole Equations

    Full text link
    We discuss the possible relevance of some recent mathematical results and techniques on four-manifolds to physics. We first suggest that the existence of uncountably many R^4's with non-equivalent smooth structures, a mathematical phenomenon unique to four dimensions, may be responsible for the observed four-dimensionality of spacetime. We then point out the remarkable fact that self-dual gauge fields and Weyl spinors can live on a manifold of Euclidean signature without affecting the metric. As a specific example, we consider solutions of the Seiberg-Witten Monopole Equations in which the U(1) fields are covariantly constant, the monopole Weyl spinor has only a single constant component, and the 4-manifold M_4 is a product of two Riemann surfaces Sigma_{p_1} and Sigma_{p_2}. There are p_{1}-1(p_{2}-1) magnetic(electric) vortices on \Sigma_{p_1}(\Sigma_{p_2}), with p_1 + p_2 \geq 2 (p_1=p_2= 1 being excluded). When the two genuses are equal, the electromagnetic fields are self-dual and one obtains the Einstein space \Sigma_p x \Sigma_p, the monopole condensate serving as the cosmological constant.Comment: 9 pages, Talk at the Second Gursey Memorial Conference, June 2000, Istanbu

    Advancing Translational Space Research Through Biospecimen Sharing: Amplifying the Impact of Ground-Based Studies

    Get PDF
    Biospecimen Sharing Programs (BSPs) have been organized by NASA Ames Research Center since the 1960s with the goal of maximizing utilization and scientific return from rare, complex and costly spaceflight experiments. BSPs involve acquiring otherwise unused biological specimens from primary space research experiments for distribution to secondary experiments. Here we describe a collaboration leveraging Ames expertise in biospecimen sharing to magnify the scientific impact of research informing astronaut health funded by the NASA Human Research Program (HRP) Human Health Countermeasures (HHC) Element. The concept expands biospecimen sharing to one-off ground-based studies utilizing analogue space platforms (e.g., Hind limb Unloading (HLU), Artificial Gravity) for rodent experiments, thereby significantly broadening the range of research opportunities with translational relevance for protecting human health in space and on Earth. In this presentation, we will report on biospecimens currently being acquired from HHC Award Head-Down Tilt as a Model for Intracranial and Intraocular Pressures, and Retinal Changes during Spaceflight, and their availability. The BSP add-on to the project described herein has already yielded for HHC-funded investigators more than 4,700 additional tissues that would otherwise have been discarded as waste, with additional tissues available for analysis. Young (3-mo old) male and female rats and Older (9-mo old) male rats are being exposed to HLU for either 7, 14, 28, or 90 days. Additional groups are exposed to 90 days of unloading followed by either 7, 14, 28 days or 90 days of recovery (normal loading). Comparisons are made with non-suspended controls. Unused tissues are: Skin, Lungs, Thymus, Adrenals, Kidneys, Spleen, Hindlimb Muscles (Soleus, Extensor Digitorum Longus, Tibialis Anterior, Plantaris Gastrocnemius), Fat Pads, Reproductive Organs, and Intestines. Tissues are harvested, weighed, preserved then archived (with metadata) using a sample tracking system (CryoTrack). Preservation techniques include snap-freezing and RNALatersnap-freezing. Specimens were weighed at the time of dissection, and organ mass: body mass ratios analyzed to determine unloading effects across conditions and durations. The results corroborate previously reported effects of short-term exposure to microgravity or unloading exposure on various organs, and provide new insights into adaptation to long-duration unloading relevant to sustained spaceflight exposures on ISS. Supported by the Human Research Program (HRP) Human Health Countermeasures (HHC) Element and NASA Grant NNX13AD94G (CAF)

    Quantum radiation in external background fields

    Full text link
    A canonical formalism is presented which allows for investigations of quantum radiation induced by localized, smooth disturbances of classical background fields by means of a perturbation theory approach. For massless, non-selfinteracting quantum fields at zero temperature we demonstrate that the low-energy part of the spectrum of created particles exhibits a non-thermal character. Applied to QED in varying dielectrics the response theory approach facilitates to study two distinct processes contributing to the production of photons: the squeezing effect due to space-time varying properties of the medium and of the velocity effect due to its motion. The generalization of this approach to finite temperatures as well as the relation to sonoluminescence is indicated.Comment: 20 page

    Phonon spectrum and soft-mode behavior of MgCNi_3

    Full text link
    Temperature dependent inelastic neutron-scattering measurements of the generalized phonon density-of-states for superconducting MgCNi_3, T_c=8 K, give evidence for a soft-mode behavior of low-frequency Ni phonon modes. Results are compared with ab initio density functional calculations which suggest an incipient lattice instability of the stoichiometric compound with respect to Ni vibrations orthogonal to the Ni-C bond direction.Comment: 4 pages, 5 figure
    corecore