2,138 research outputs found
Proceedings: Regenerative Medicine for Lung Diseases: A CIRM Workshop Report.
The mission of the California Institute of Regenerative Medicine (CIRM) is to accelerate treatments to patients with unmet medical needs. In September 2016, CIRM sponsored a workshop held at the University of California, Los Angeles, to discuss regenerative medicine approaches for treatment of lung diseases and to identify the challenges remaining for advancing such treatments to the clinic and market approval. Workshop participants discussed current preclinical and clinical approaches to regenerative medicine in the lung, as well as the biology of lung stem cells and the role of stem cells in the etiology of various lung diseases. The outcome of this effort was the recognition that whereas transient cell delivery approaches are leading the way in the clinic, recent advances in the understanding of lung stem cell biology, in vitro and in vivo disease modeling, gene editing and replacement methods, and cell engraftment approaches raise the prospect of developing cures for some lung diseases in the foreseeable future. In addition, advances in in vitro modeling using lung organoids and "lung on a chip" technology are setting the stage for high quality small molecule drug screening to develop treatments for lung diseases with complex biology. Stem Cells Translational Medicine 2017;6:1823-1828
Recommended from our members
Requests for Abortion in Latin America Related to Concern about Zika Virus Exposure
With the rapid emergence of Zika virus throughout Latin America and its association with microcephaly, requests for access to abortion medications through online telemedicine have increased in countries where access to safe abortion is not universally available. On November 17, 2015, the Pan American Health Organization (PAHO) issued an epidemiologic alert regarding Zika virus in Latin America. Several countries subsequently issued health advisories, including cautions about microcephaly, declarations of national emergency, and unprecedented warnings urging women to avoid pregnancy. Yet in most Latin American countries, abortion is illegal or highly restricted, leaving pregnant women with few options.Population Research Cente
VTA neurons coordinate with the hippocampal reactivation of spatial experience
Spatial learning requires the hippocampus, and the replay of spatial sequences during hippocampal sharp wave-ripple (SPW-R) events of quiet wakefulness and sleep is believed to play a crucial role. To test whether the coordination of VTA reward prediction error signals with these replayed spatial sequences could contribute to this process, we recorded from neuronal ensembles of the hippocampus and VTA as rats performed appetitive spatial tasks and subsequently slept. We found that many reward responsive (RR) VTA neurons coordinated with quiet wakefulnessassociated hippocampal SPW-R events that replayed recent experience. In contrast, coordination between RR neurons and SPW-R events in subsequent slow wave sleep was diminished. Together, these results indicate distinct contributions of VTA reinforcement activity associated with hippocampal spatial replay to the processing of wake and SWS-associated spatial memory.National Institutes of Health (U.S.) (Grant R01-MH061976)United States. Office of Naval Research (Grant N00014-10-1-0936)National Institutes of Health (U.S.) (Grant K08-MH-81207-01A1
VTA neurons coordinate with the hippocampal reactivation of spatial experience
Spatial learning requires the hippocampus, and the replay of spatial sequences during hippocampal sharp wave-ripple (SPW-R) events of quiet wakefulness and sleep is believed to play a crucial role. To test whether the coordination of VTA reward prediction error signals with these replayed spatial sequences could contribute to this process, we recorded from neuronal ensembles of the hippocampus and VTA as rats performed appetitive spatial tasks and subsequently slept. We found that many reward responsive (RR) VTA neurons coordinated with quiet wakefulness-associated hippocampal SPW-R events that replayed recent experience. In contrast, coordination between RR neurons and SPW-R events in subsequent slow wave sleep was diminished. Together, these results indicate distinct contributions of VTA reinforcement activity associated with hippocampal spatial replay to the processing of wake and SWS-associated spatial memory.National Institutes of Health (U.S.) (Grant R01-MH061976)United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-10-1-0936)National Institutes of Health (U.S.) (Mentored Grant K08-MH-81207-01A1
State Differentiation by Transient Truncation in Coupled Threshold Dynamics
Dynamics with a threshold input--output relation commonly exist in gene,
signal-transduction, and neural networks. Coupled dynamical systems of such
threshold elements are investigated, in an effort to find differentiation of
elements induced by the interaction. Through global diffusive coupling, novel
states are found to be generated that are not the original attractor of
single-element threshold dynamics, but are sustained through the interaction
with the elements located at the original attractor. This stabilization of the
novel state(s) is not related to symmetry breaking, but is explained as the
truncation of transient trajectories to the original attractor due to the
coupling. Single-element dynamics with winding transient trajectories located
at a low-dimensional manifold and having turning points are shown to be
essential to the generation of such novel state(s) in a coupled system.
Universality of this mechanism for the novel state generation and its relevance
to biological cell differentiation are briefly discussed.Comment: 8 pages. Phys. Rev. E. in pres
Interactions between Germ Cells and Extracellular Matrix Glycoproteins during Migration and Gonad Assembly in the Mouse Embryo
Cells are known to bind to individual extracellular matrix glycoproteins in a complex and poorly understood way. Overall strength of adhesion is thought to be mediated by a combinatorial mechanism, involving adhesion of a cell to a variety of binding sites on the target glycoproteins. During migration in embryos, cells must alter their overall adhesiveness to the substrate to allow locomotion. The mechanism by which this is accomplished is not well understood. During early development, the cells destined to form the gametes, the primordial germ cells (PGCs), migrate from the developing hind gut to the site where the gonad will form. We have used whole-mount immunocytochemistry to study the changing distribution of three extracellular matrix glycoproteins, collagen IV, fibronectin, and laminin, during PGC migration and correlated this with quantitative assays of adhesiveness of PGCs to each of these. We show that PGCs change their strength of adhesion to each glycoprotein differentially during these stages. Furthermore, we show that PGCs interact with a discrete tract of laminin at the end of migration. Closer analysis of the adhesion of PGCs to laminin revealed that PGCs adhere particularly strongly to the E3 domain of laminin, and blocking experiments in vitro suggest that they adhere to this domain using a cell surface proteoglycan
Magic number 7 2 in networks of threshold dynamics
Information processing by random feed-forward networks consisting of units
with sigmoidal input-output response is studied by focusing on the dependence
of its outputs on the number of parallel paths M. It is found that the system
leads to a combination of on/off outputs when , while for , chaotic dynamics arises, resulting in a continuous distribution of
outputs. This universality of the critical number is explained by
combinatorial explosion, i.e., dominance of factorial over exponential
increase. Relevance of the result to the psychological magic number
is briefly discussed.Comment: 6 pages, 5 figure
A variational approach to the stochastic aspects of cellular signal transduction
Cellular signaling networks have evolved to cope with intrinsic fluctuations,
coming from the small numbers of constituents, and the environmental noise.
Stochastic chemical kinetics equations govern the way biochemical networks
process noisy signals. The essential difficulty associated with the master
equation approach to solving the stochastic chemical kinetics problem is the
enormous number of ordinary differential equations involved. In this work, we
show how to achieve tremendous reduction in the dimensionality of specific
reaction cascade dynamics by solving variationally an equivalent quantum field
theoretic formulation of stochastic chemical kinetics. The present formulation
avoids cumbersome commutator computations in the derivation of evolution
equations, making more transparent the physical significance of the variational
method. We propose novel time-dependent basis functions which work well over a
wide range of rate parameters. We apply the new basis functions to describe
stochastic signaling in several enzymatic cascades and compare the results so
obtained with those from alternative solution techniques. The variational
ansatz gives probability distributions that agree well with the exact ones,
even when fluctuations are large and discreteness and nonlinearity are
important. A numerical implementation of our technique is many orders of
magnitude more efficient computationally compared with the traditional Monte
Carlo simulation algorithms or the Langevin simulations.Comment: 15 pages, 11 figure
Recommended from our members
Modeling Progressive Fibrosis with Pluripotent Stem Cells Identifies an Anti-fibrotic Small Molecule.
Progressive organ fibrosis accounts for one-third of all deaths worldwide, yet preclinical models that mimic the complex, progressive nature of the disease are lacking, and hence, there are no curative therapies. Progressive fibrosis across organs shares common cellular and molecular pathways involving chronic injury, inflammation, and aberrant repair resulting in deposition of extracellular matrix, organ remodeling, and ultimately organ failure. We describe the generation and characterization of an in vitro progressive fibrosis model that uses cell types derived from induced pluripotent stem cells. Our model produces endogenous activated transforming growth factor β (TGF-β) and contains activated fibroblastic aggregates that progressively increase in size and stiffness with activation of known fibrotic molecular and cellular changes. We used this model as a phenotypic drug discovery platform for modulators of fibrosis. We validated this platform by identifying a compound that promotes resolution of fibrosis in in vivo and ex vivo models of ocular and lung fibrosis
Recommended from our members
High-Throughput Drug Screening Identifies a Potent Wnt Inhibitor that Promotes Airway Basal Stem Cell Homeostasis.
Mechanisms underpinning airway epithelial homeostatic maintenance and ways to prevent its dysregulation remain elusive. Herein, we identify that β-catenin phosphorylated at Y489 (p-β-cateninY489) emerges during human squamous lung cancer progression. This led us to develop a model of airway basal stem cell (ABSC) hyperproliferation by driving Wnt/β-catenin signaling, resulting in a morphology that resembles premalignant lesions and loss of ciliated cell differentiation. To identify small molecules that could reverse this process, we performed a high-throughput drug screen for inhibitors of Wnt/β-catenin signaling. Our studies unveil Wnt inhibitor compound 1 (WIC1), which suppresses T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) activity, reduces ABSC proliferation, induces ciliated cell differentiation, and decreases nuclear p-β-cateninY489. Collectively, our work elucidates a dysregulated Wnt/p-β-cateninY489 axis in lung premalignancy that can be modeled in vitro and identifies a Wnt/β-catenin inhibitor that promotes airway homeostasis. WIC1 may therefore serve as a tool compound in regenerative medicine studies with implications for restoring normal airway homeostasis after injury
- …
