2,374 research outputs found

    Correction to: Rev1 wbdR tagged vaccines against Brucella ovis

    Get PDF
    Correction to: Rev1 wbdR tagged vaccines against Brucella ovis, Vet Res (2019) 50:95 https://doi.org/10.1186/s13567-019-0714-

    WadD, a New Brucella Lipopolysaccharide Core Glycosyltransferase Identified by Genomic Search and Phenotypic Characterization

    Get PDF
    Brucellosis, an infectious disease caused by Brucella, is one of the most extended bacterial zoonosis in the world and an important cause of economic losses and human suffering. The lipopolysaccharide (LPS) of Brucella plays a major role in virulence as it impairs normal recognition by the innate immune system and delays the immune response. The LPS core is a branched structure involved in resistance to complement and polycationic peptides, and mutants in glycosyltransferases required for the synthesis of the lateral branch not linked to the O-polysaccharide (O-PS) are attenuated and have been proposed as vaccine candidates. For this reason, the complete understanding of the genes involved in the synthesis of this LPS section is of particular interest. The chemical structure of the Brucella LPS core suggests that, in addition to the already identified WadB and WadC glycosyltransferases, others could be implicated in the synthesis of this lateral branch. To clarify this point, we identified and constructed mutants in 11 ORFs encoding putative glycosyltransferases in B. abortus. Four of these ORFs, regulated by the virulence regulator MucR (involved in LPS synthesis) or the ByrR/ByrS system (implicated in the synthesis of surface components), were not required for the synthesis of a complete LPS neither for virulence or interaction with polycationic peptides and/or complement. Among the other seven ORFs, six seemed not to be required for the synthesis of the core LPS since the corresponding mutants kept the O-PS and reacted as the wild type with polyclonal sera. Interestingly, mutant in ORF BAB1_0953 (renamed wadD) lost reactivity against antibodies that recognize the core section while kept the O-PS. This suggests that WadD is a new glycosyltransferase adding one or more sugars to the core lateral branch. WadD mutants were more sensitive than the parental strain to components of the innate immune system and played a role in chronic stages of infection. These results corroborate and extend previous work indicating that the Brucella LPS core is a branched structure that constitutes a steric impairment preventing the elements of the innate immune system to fight against Brucella

    The synovial and blood monocyte DNA methylomes mirror prognosis, evolution and treatment in early arthritis

    Full text link
    Identifying predictive biomarkers at early stages of early inflammatory arthritis is crucial for starting appropriate therapies to avoid poor outcomes. Monocytes and macrophages, largely associated with arthritis, are contributors and sensors of inflammation through epigenetic modifications. In this study, we investigated associations between clinical features and DNA methylation in blood and synovial fluid (SF) monocytes in a prospective cohort of early inflammatory arthritis patients. Undifferentiated arthritis (UA) blood monocyte DNA methylation profiles exhibited significant alterations in comparison with those from healthy donors. We identified additional differences both in blood and SF monocytes after comparing UA patients grouped by their future outcomes, good versus poor. Patient profiles in subsequent visits revealed a reversion towards a healthy level in both groups, those requiring disease-modifying antirheumatic drugs (DMARDs) and those that remitted spontaneously. Changes in disease activity between visits also impacted DNA methylation, partially concomitant in the SF of UA and in blood monocytes of rheumatoid arthritis patients. Epigenetic similarities between arthritis types allow a common prediction of disease activity. Our results constitute a resource of DNA methylation-based biomarkers of poor prognosis, disease activity and treatment efficacy in early untreated UA patients for the personalized clinical management of early inflammatory arthritis patients

    Increase of the Adiponectin/Leptin Ratio in Patients with Obesity and Type 2 Diabetes after Roux-en-Y Gastric Bypass

    Get PDF
    Bariatric surgery remains the most effective option for achieving important and sustained weight loss. We explored the effects of Roux-en-Y gastric bypass (RYGB) on the circulating levels of adiponectin, leptin, and the adiponectin/leptin (Adpn/Lep) ratio in patients with obesity and type 2 diabetes (T2D). Twenty-five T2D volunteers undergoing RYGB were included in the study, and further subclassified as patients that responded or not to RYBG, regarding remission of T2D. Anthropometric and biochemical variables were evaluated before and after RYGB. Obese patients with T2D exhibited an increase (p < 0.0001) in the Adpn/Lep ratio after RYGB. Changes in the Adpn/Lep ratio correlated better with changes in anthropometric data (p < 0.001) than with the variations of adiponectin or leptin alone. Multiple regression analysis revealed that the change in the Adpn/Lep ratio in patients with T2D was an independent predictor of the changes in body mass index (p < 0.001) and body fat percentage (p = 0.022). However, the Adpn/Lep ratio did not differ between individuals with or without T2D remission after RYGB. In summary, the current study demonstrated that after weight and body fat loss following RYGB, the Adpn/Lep ratio increased in patients with obesity and T2D

    WadD, a New Brucella Lipopolysaccharide Core Glycosyltransferase Identified by Genomic Search and Phenotypic Characterization

    Get PDF
    Brucellosis, an infectious disease caused by Brucella, is one of the most extended bacterial zoonosis in the world and an important cause of economic losses and human suffering. The lipopolysaccharide (LPS) of Brucella plays a major role in virulence as it impairs normal recognition by the innate immune system and delays the immune response. The LPS core is a branched structure involved in resistance to complement and polycationic peptides, and mutants in glycosyltransferases required for the synthesis of the lateral branch not linked to the O-polysaccharide (O-PS) are attenuated and have been proposed as vaccine candidates. For this reason, the complete understanding of the genes involved in the synthesis of this LPS section is of particular interest. The chemical structure of the Brucella LPS core suggests that, in addition to the already identified WadB and WadC glycosyltransferases, others could be implicated in the synthesis of this lateral branch. To clarify this point, we identified and constructed mutants in 11 ORFs encoding putative glycosyltransferases in B. abortus. Four of these ORFs, regulated by the virulence regulator MucR (involved in LPS synthesis) or the BvrR/BvrS system (implicated in the synthesis of surface components), were not required for the synthesis of a complete LPS neither for virulence or interaction with polycationic peptides and/or complement. Among the other seven ORFs, six seemed not to be required for the synthesis of the core LPS since the corresponding mutants kept the O-PS and reacted as the wild type with polyclonal sera. Interestingly, mutant in ORF BAB1_0953 (renamed wadD) lost reactivity against antibodies that recognize the core section while kept the O-PS. This suggests that WadD is a new glycosyltransferase adding one or more sugars to the core lateral branch. WadD mutants were more sensitive than the parental strain to components of the innate immune system and played a role in chronic stages of infection. These results corroborate and extend previous work indicating that the Brucella LPS core is a branched structure that constitutes a steric impairment preventing the elements of the innate immune system to fight against Brucell

    An SiO Toroid and Wide-angle Outflow associated with the Massive Protostar W75N(B)-VLA2

    Full text link
    We have carried out ALMA observations of the massive star-forming region W75N(B), which contains the massive protostars VLA1, VLA2, and VLA3. Particularly, VLA2 is an enigmatic protostar associated with a wind-driven H2_2O maser shell, which has evolved from an almost isotropic outflow to a collimated one in just 20 years. The shell expansion seemed to be halted by an obstacle located to the northeast of VLA2. Here we present our findings from observing the 1.3 mm continuum and H2_2CO and SiO emission lines. Within a region of 30"\sim 30" (39,000\sim 39,000 au) diameter, we have detected 40 compact mm-continuum sources, three of them coinciding with VLA1, VLA2, and VLA3. While the H2_2CO emission is mainly distributed in a fragmented structure around the three massive protostars, but without any of the main H2_2CO clumps spatially coinciding with them, the SiO is highly concentrated on VLA2, indicating the presence of very strong shocks generated near this protostar. The SiO emission is clearly resolved into an elongated structure (0.6"×0.3"\sim 0.6"\times0.3"; 780\sim 780 au×\times390 au) perpendicular to the major axis of the wind-driven maser shell. The structure and kinematics of the SiO emission are consistent with a toroid and a wide-angle outflow surrounding a central mass of 10\sim 10 M_{\odot}, thus supporting previous theoretical predictions regarding the evolution of the outflow. Additionally, we have identified the expected location and estimated the gas density of the obstacle that is hindering the expansion of the maser shell.Comment: To be published in The Astrophysical Journal Letters. Sixteen pages, seven figures. Updated metadat

    GLP-1 limits adipocyte inflammation and its low circulating pre-operative concentrations predict worse type 2 diabetes remission after bariatric surgery in obese patients

    Get PDF
    Objective: Glucagon-like peptide (GLP)-1 has been proposed as a key candidate in glucose improvements after bariatric surgery. Our aim was to explore the role of GLP-1 in surgically-induced type 2 diabetes (T2D) improvement and its capacity to regulate human adipocyte inflammation. Methods: Basal circulating concentrations of GLP-1 as well as during an oral glucose tolerance test (OGTT) were measured in lean and obese volunteers with and without T2D (n = 93). In addition, GLP-1 levels were determined before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB) (n = 77). The impact of GLP-1 on inflammation signalling pathways was also evaluated. Results: We show that the reduced (p < 0.05) circulating levels of GLP-1 in obese T2D patients increased (p < 0.05) after RYGB. The area under the curve was significantly lower in obese patients with (p < 0.01) and without (p < 0.05) T2D compared to lean volunteers while obese patients with T2D exhibited decreased GLP-1 levels at baseline (p < 0.05) and 120 min (p < 0.01) after the OGTT. Importantly, higher (p < 0.05) pre-operative GLP-1 concentrations were found in patients with T2D remission after RYGB. We also revealed that exendin-4, a GLP-1 agonist, downregulated the expression of inflammation-related genes (IL1B, IL6, IL8, TNF) and, conversely, upregulated the mRNA levels of ADIPOQ in human visceral adipocytes. Furthermore, exendin-4 blocked (p < 0.05) LPS-induced inflammation in human adipocytes via downregulating the expression and secretion of key inflammatory markers. Conclusions: Our data indicate that GLP-1 may contribute to glycemic control and exert a role in T2D remission after RYGB. GLP-1 is also involved in limiting inflammation in human visceral adipocytes

    Leucemia mieloide crónica en paciente pediátrico. Experiencia en nuestro centro

    Get PDF
    PB-080 Introducción: La Leucemia Mieloide Crónica (LMC) constituye una patología rara en niños constituyendo el 2% de todas las leucemias diagnosticadas en niños menores de 15 años. La presentación clínica suele ser más agresiva que en adultos y la proporción de pacientes con LMC en fase acelerada o blástica es mayor que para pacientes de edad más avanzada. La cifra media de leucocitos al diagnóstico se encuentra en 250 x 109/L, mientras que en adultos es de 80x109/L - 150x109/L. El 90- 95% de los niños con características clínicas y morfológicas de LMC tienen cromosoma Philadelphia positivo. El manejo de la enfermedad se basa en la presentación, la fase en la que se encuentre y los niveles de respuesta al tratamiento. Material y métodos: Estudio descriptivo y retrospectivo en el que se han analizado las características clínicas, de laboratorio y la respuesta al tratamiento de los pacientes pediátricos diagnosticados de LMC en los últimos 10 años en nuestro hospital (hospital de tercer nivel y de referencia de la CCAA de Aragón). Resultados: Uno de ellos no realizó ningún tipo de respuesta al Imatinib con aumento de las copias de BCR/ABL por Biología Molecular a pesar de buenos niveles de Imatinib, por lo que se inició tratamiento con Dasatinib en marzo de 2018, alcanzando en la última reevaluación a los a los 12 meses respuesta citogenética pero sin alcanzar ningún tipo de respuesta molecular. Conclusiones: Como se describe en la literatura, ambos pacientes ..

    Clinical relevance of postzygotic mosaicism in Cornelia de Lange syndrome and purifying selection of NIPBL variants in blood

    Get PDF
    Postzygotic mosaicism (PZM) in NIPBL is a strong source of causality for Cornelia de Lange syndrome (CdLS) that can have major clinical implications. Here, we further delineate the role of somatic mosaicism in CdLS by describing a series of 11 unreported patients with mosaic disease-causing variants in NIPBL and performing a retrospective cohort study from a Spanish CdLS diagnostic center. By reviewing the literature and combining our findings with previously published data, we demonstrate a negative selection against somatic deleterious NIPBL variants in blood. Furthermore, the analysis of all reported cases indicates an unusual high prevalence of mosaicism in CdLS, occurring in 13.1% of patients with a positive molecular diagnosis. It is worth noting that most of the affected individuals with mosaicism have a clinical phenotype at least as severe as those with constitutive pathogenic variants. However, the type of genetic change does not vary between germline and somatic events and, even in the presence of mosaicism, missense substitutions are located preferentially within the HEAT repeat domain of NIPBL. In conclusion, the high prevalence of mosaicism in CdLS as well as the disparity in tissue distribution provide a novel orientation for the clinical management and genetic counselling of families
    corecore