22 research outputs found

    Techniques for nonlinear optical characterization of materials: a review

    Get PDF
    Various techniques to characterize the nonlinear (NL) optical response of centro-symmetric materials are presented and evaluated with emphasis on the relationship between the macroscopic measurable quantities and the microscopic properties of photonic materials. NL refraction and NL absorption of the materials are the phenomena of major interest. The dependence of the NL refraction and NL absorption coefficients on the nature of the materials was studied as well as on the laser excitation characteristics of wavelength, intensity, spatial profile, pulse duration and pulses repetition rate. Selected experimental results are discussed and illustrated. The various techniques currently available were compared and their relative advantages and drawbacks were evaluated. Critical comparisons among established techniques provided elements to evaluate their accuracies and sensitivities with respect to novel methods that present improvements with respect to the conventional techniques

    Third-order nonlinear optical properties of bismuth-borate glasses measured by conventional and thermally managed eclipse Z scan

    No full text
    Third-order nonlinearity one order of magnitude larger than silica is measured in bismuth-borate glasses presenting a fast response (<200 fs). The results for the sign and magnitude of the nonlinearity were obtained using a combination of the eclipse Z scan with thermal nonlinearity managed Z scan, whereas the Kerr shutter technique was employed to obtain the electronic time response of the nonlinearity, all performed with 76 MHz repetition rate 150 fs pulses at 800 nm. Conventional Z scans in the picosecond regime at 532 and 1064 nm were also independently performed, yielding the values of the third-order nonlinear susceptibilities at those wavelengths. The results obtained for the femtosecond response, enhanced third-order nonlinearity of this glass (with respect to silica), place this glass system as an important tool in the development of photonics devices. Electro-optical modulators, optical switches, and frequency converters are some of the applications using second-order nonlinear properties of the Bi-glass based on the rectification model

    Femtosecond laser-written waveguides in thulium-doped fluoroindate glass for S-band amplification

    Get PDF
    Channel waveguides were written in a fluoroindate bulk glass containing thulium, with a femtosecond laser operating at 800 nm, 100 fs pulses and repetition rate 1 kHz. Formation of waveguides occurred for average powers from 1 to 8 mW (corresponding to energies of 1 to 8 microJ) and scan velocities in the range 0.1 to 4 mm/s. Passive optical characterization included visual inspection by optical microscope, insertion loss and mode profile. Active characterization was performed by co-propagating pumping in a dual-pump scheme that included a 808 nm and a 1054 nm laser diode for an efficient inversion of the 3^3H4_4 level which is responsible for stimulated emission in the 1460-1530 nm spectral range. Preliminary tests show a net gain of 2.5 dB at 1487 nm, for straight waveguides 1 cm long. Applications include the fabrication of lossless components working in the S-band region of the optical communication spectrum

    Development and validation of a microbiological assay for determination of chlorhexidine digluconate in aqueous solution

    Get PDF
    Chlorhexidine (CHX) is a broad-spectrum antiseptic that is used in many topical pharmaceutical formulations. Because there is no official microbiological assay reported in the literature that is used to quantify CHX, this paper reports the development and validation of a simple, sensitive, accurate and reproducible agar diffusion method for the dosage of chlorhexidine digluconate (CHX-D) in an aqueous solution. The assay is based on the inhibitory effect of CHX-D upon the strain of Staphylococcus aureus ATCC 25923, which is used as the test microorganism. The design 3x3 parallel-line model was used. The results were treated statistically by analysis of variance (ANOVA), and they were excellent in terms of linearity (r = 0.9999), presenting a significant regression between the zone diameter of growth inhibition and the logarithm of the concentration within the range of 0.5 to 4.5%. The results obtained were precise, having relative standard deviations (RSD) for intra-day and inter-day precision of 2.03% and 2.94%, respectively. The accuracy was 99.03%. The method proved to be very useful and appropriate for the microbiological dosage of CHX-D in pharmaceutical formulations; it might also be used for routine drug analysis during quality control in pharmaceutical industries

    Amplification properties of femtosecond laser-written Er3+/Yb3+ doped waveguides in a Tellurium-Zinc glass

    No full text
    In this letter we report on the fabrication and characterization of active waveguides in a TeO2-ZnO glass sample doped with Er3+/Yb3+ fabricated by direct laser writing with a femtosecond laser delivering 150 fs pulses at 1 kHz repetition rate. The waveguides exhibit an internal gain of 0.6 dB/cm at 1535 nm, thus demonstrating the feasibility of active photonics lightwave circuits and lossless components in such a glass compositio

    Characterisation of natural carious lesions by flurescence spectroscopy at 405nm excitation wavelength

    No full text
    We aim to characterize natural caries enamel lesions by fluorescence spectroscopy. Sixty human samples with natural noncavitated caries lesions on smooth surfaces were selected and classified into three groups: dull, shiny, and brown lesions. All the samples were analyzed externally at the natural surface and after hemisectionig internally at the center of the lesion. The lesions were excited with a 405-nm InGaN diode laser and the fluorescence was collected with a single grating spectrometer. Four emission bands (455, 500, 582, and 622 nm) are identified in both sound and carious regions. The area under each emission band is correlated with the total area of the four bands for the sound and carious regions. The detected fluorescence from natural and cut surfaces through the caries lesions is not statistically different for the shiny and dull lesion, but is different [analysis of variance (ANOVA) (p<0.05)] for brown lesion at all emission bands. At the 405-nm excitation wavelength, the area of the fluorescence bands at 455 and 500 nm differ statistically for natural carious lesions and sound tissue
    corecore