632 research outputs found

    Heat shock proteins are methylated in avian and mammalian cells.

    Full text link

    Polarization-correlated photon pairs from a single ion

    Full text link
    In the fluorescence light of a single atom, the probability for emission of a photon with certain polarization depends on the polarization of the photon emitted immediately before it. Here correlations of such kind are investigated with a single trapped calcium ion by means of second order correlation functions. A theoretical model is developed and fitted to the experimental data, which show 91% probability for the emission of polarization-correlated photon pairs within 24 ns.Comment: 8 pages, 9 figure

    Microscopic mechanisms of thermal and driven diffusion of non rigid molecules on surfaces

    Get PDF
    The motion of molecules on solid surfaces is of interest for technological applications such as catalysis and lubrication, but it is also a theoretical challenge at a more fundamental level. The concept of activation barriers is very convenient for the interpretation of experiments and as input for Monte Carlo simulations but may become inadequate when mismatch with the substrate and molecular vibrations are considered. We study the simplest objects diffusing on a substrate at finite temperature TT, namely an adatom and a diatomic molecule (dimer), using the Langevin approach. In the driven case, we analyse the characteristic curves, comparing the motion for different values of the intramolecular spacing, both for T=0 and T≠0T\ne 0. The mobility of the dimer is higher than that of the monomer when the drift velocity is less than the natural stretching frequency. The role of intramolecular excitations is crucial in this respect. In the undriven case, the diffusive dynamics is considered as a function of temperature. Contrary to atomic diffusion, for the dimer it is not possible to define a single, temperature independent, activation barrier. Our results suggest that vibrations can account for drastic variations of the activation barrier. This reveals a complex behaviour determined by the interplay between vibrations and a temperature dependent intramolecular equilibrium length.Comment: 6 pages, 5 figures, Proceeding of the EMRS 2002 Conference, to be published in Thin Solid Film

    Mean-Field Treatment of the Many-Body Fokker-Planck Equation

    Full text link
    We review some properties of the stationary states of the Fokker - Planck equation for N interacting particles within a mean field approximation, which yields a non-linear integrodifferential equation for the particle density. Analytical results show that for attractive long range potentials the steady state is always a precipitate containing one cluster of small size. For arbitrary potential, linear stability analysis allows to state the conditions under which the uniform equilibrium state is unstable against small perturbations and, via the Einstein relation, to define a critical temperature Tc separating two phases, uniform and precipitate. The corresponding phase diagram turns out to be strongly dependent on the pair-potential. In addition, numerical calculations reveal that the transition is hysteretic. We finally discuss the dynamics of relaxation for the uniform state suddenly cooled below Tc.Comment: 13 pages, 8 figure

    Optical Control of Field-Emission Sites by Femtosecond Laser Pulses

    Full text link
    We have investigated field emission patterns from a clean tungsten tip apex induced by femtosecond laser pulses. Strongly asymmetric modulations of the field emission intensity distributions are observed depending on the polarization of the light and the laser incidence direction relative to the azimuthal orientation of tip apex. In effect, we have realized an ultrafast pulsed field-emission source with site selectivity on the 10 nm scale. Simulations of local fields on the tip apex and of electron emission patterns based on photo-excited nonequilibrium electron distributions explain our observations quantitatively.Comment: 4 pages, submitted to Physical Review Letter

    Diffusive Spreading of Chainlike Molecules on Surfaces

    Full text link
    We study the diffusion and submonolayer spreading of chainlike molecules on surfaces. Using the fluctuating bond model we extract the collective and tracer diffusion coefficients D_c and D_t with a variety of methods. We show that D_c(theta) has unusual behavior as a function of the coverage theta. It first increases but after a maximum goes to zero as theta go to one. We show that the increase is due to entropic repulsion that leads to steep density profiles for spreading droplets seen in experiments. We also develop an analytic model for D_c(theta) which agrees well with the simulations.Comment: 3 pages, RevTeX, 4 postscript figures, to appear in Phys. Rev. Letters (1996

    Non-Arrhenius Behavior of Surface Diffusion Near a Phase Transition Boundary

    Full text link
    We study the non-Arrhenius behavior of surface diffusion near the second-order phase transition boundary of an adsorbate layer. In contrast to expectations based on macroscopic thermodynamic effects, we show that this behavior can be related to the average microscopic jump rate which in turn is determined by the waiting-time distribution W(t) of single-particle jumps at short times. At long times, W(t) yields a barrier that corresponds to the rate-limiting step in diffusion. The microscopic information in W(t) should be accessible by STM measurements.Comment: 4 pages, Latex with RevTeX macro

    Negotiation as an interaction mechanism for deciding app permissions

    No full text
    On the Android platform, apps make use of personal data as part of their business model, trading location, contacts, photos and more for app use. Few people are particularly aware of the permission settings or make changes to them. We hypothesize that both the difficulty in checking permission settings for all apps on a device, along with the lack of flexibility in deciding what happens to one's data, makes the perceived cost to protect one's privacy too high. In this paper, we present the preliminary results of a study that explores what happens when permission settings are more discretional at install time. We present the results of a pilot experiment, in which we ask users to negotiate which data they are happy to share, and we show that this results in higher user satisfaction than the typical take-it-or-leave-it setting. Our preliminary findings suggest negotiating consent is a powerful interaction mechanism that engages users and can enable them to strike a balance between privacy and pricing concerns

    Field emission in ordered arrays of ZnO nanowires prepared by nanosphere lithography and extended Fowler-Nordheim analyses

    Get PDF
    A multistage chemical method based on nanosphere lithography was used to produce hexagonally patterned arrays of ZnO vertical nanowires, with 1 lm interspacing and aspect ratio 20, with a view to study the effects of emitter uniformity on the current emitted upon application of a dc voltage across a 250 lm vacuum gap. A new treatment, based on the use of analytical expressions for the image-potential correction functions, was applied to the linear region below 2000 V of the Fowler-Nordheim (FN) plot and showed the most suitable value of the work function / in the range 3.3–4.5 eV (conduction band emission) with a Schottky lowering parameter y ~ 0.72 and a field enhancement factor c in the 700–1100 range. A modeled c value of 200 was calculated for an emitter shape of a prolate ellipsoid of revolution and also including the effect of nanowire screening, in fair agreement with the experimental value. The Fowler-Nordheim current densities and effective emission areas were derived as 1011 Am2 and 1017 m2, respectively, showing that field emission likely takes place in an area of atomic dimensions at the tip of the emitter. Possible causes for the observed departure from linear FN plot behavior above 2000 V were discussed
    • 

    corecore