228 research outputs found

    Modelling and Digital Mapping of the Infiltration Characteristics of Major Agricultural Soils

    Get PDF
    A study was attempted to assess the infiltration characteristics of major soils of Sohag governorate, Egypt. Twelve soil profiles were exposed and morphologically examined to represent the soils of the study area. Horizon-wise soil samples were taken and analyzed for physical and chemical properties. The infiltration field measurements were made for five hours using a double-ring infiltrometer, and the empirical Kostiakovā€™s infiltration model was applied. The results indicated that the soils were classified as Aridisols, Entisols, and Vertisols. Initial infiltration rates ranged between 0.80 and 6.67 m/day. The highest values (6.47 and 6.67 m/day) were observed in locations No. 11 and 12, where the coarse texture prevailed. The fine texture soils recorded the lowest values (0.80, 0.81, and 0.82 m/day) in locations No. 8, 4, and 7, respectively. Infiltration rate is classified as very rapid, rapid, moderately rapid, and moderate. A correlation was found between steady infiltration rates and sand, hydraulic conductivity, CaCO3 content, and organic carbon in order r=0.95, 0.93, 0.74, and 0.79. However, were found to be negatively correlated with the infiltration rates (r= -0.80, -0.91, -0.95, -0.97, -0.64, -0.91, respectively. Whereas bulk density showed an insignificant relationship (p=0.05) with infiltration rates in the order of r=0.13. GIS environment was used to generate different maps of soil parameters, and finally, the infiltration map was produced for the study area

    Isothermal Modelling Based Experimental Study of Dissolved Hydrogen Sulfide Adsorption from Waste Water using Eggshell Based Activated Carbon

    Get PDF
    This paper reports on the experimental work using batch process conducted to determine the adsorption capacity of dissolved hydrogen sulfide in the synthetic wastewater onto the activated carbon which is derived from the eggshell. Fourier Transform Infrared Spectroscopy (FTIR), Energy-Dispersive X-ray Spectroscopy (EDX), Scanning Electron Microscopy (SEM), and particle size distribution have been used to characterize the prepared material. The raw materials of chicken eggshell are adopted to retrieve the carbon content which is then activated using KOH as the activation agent. The examined concentration of dissolved hydrogen sulfide is ranging from 100 to 500 ppm. The maximum adsorption capacity of the dissolved H2S onto the activated carbon is 289.3 mg/g and the equilibrium time is 6 hours. The examined pH value in this study is ranging from 4.5 to 5.5. The two well-known equilibrium adsorption isotherm models, i.e. the Langmuir and the Freundlich models, are employed. It is found that the adsorption isotherm capacity agrees very well to the Freundlich isotherm model. This paper attempts to show the difficulties of converting CaCO 3 to carbon due to the fact that the raw material contains higher calcium (Ca) content instead of carbon. It is concluded that the carbon derived from the chickensā€™ eggshells is very beneficial for treatment of dissolved H2S in waste water

    CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study

    Get PDF
    This study presents the electrochemical studies of activated carbon prepared from palm kernel shell (ACPKS), with CaO impregnation. The CaO is obtained from chicken eggshell waste to produce CaO/ACPKS, which shows highly porous honeycomb structure with homogeneous distribution of CaO nanoparticles (30ā€“50 nm in size). The prepared materials are evaluated as supercapacitor electrodes by testing their electrochemical characteristics. A high specific capacitance value of 222 F gāˆ’1 at 0.025 A gāˆ’1 is obtained for CaO/ACPKS, which is around three times higher than that for ACPKS (76 F gāˆ’1). In addition, electrochemical impedance data show lower impedance for CaO/ACPKS. Lastly, a practical symmetrical supercapacitor is fabricated by CaO/ACPKS and its performance is discussed

    Hydrogen sulfide emission sources, regulations, and removal techniques: a review

    Get PDF
    This review highlights the recent technologies of H2S removal from wastewater in the petroleum refinery. H2S is a harmful, putrid, and hazardous gaseous compound. The main processes such as physicochemical, chemical, biological, and electrochemical methods were compared and discussed in detail. The effects of various parameters and adsorbent characteristics were highlighted and correlated with the adsorption capacities. Surface functional groups and porosity surface area play a crucial role in the process of single-phase and composite adsorbents. Composite materials impregnated with some metals showed high removal efficiencies. It was found that the adsorption process is the most relevant way for H2S removal due to its high removal efficiency, low cost, eco-friendly, and operational simplicity. This study serves as a useful guideline for those who are interested in H2S removal

    Kinetic, Isotherm And Equilibrium Study Of Adsorption Of Hydrogen Sulfide From Wastewater Using Modified Eggshells

    Get PDF
    The studies of adsorption equilibrium isotherm and kinetics of hydrogen sulfide-water systems on calcite-based adsorbents prepared from eggshell are undertaken. The effects of operating variables such as contact time and initial concentration on the adsorption capacity of hydrogen sulfide are investigated. The modified eggshells are characterized by using different analytical approaches such as Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR). The batch mode adsorption process is performed at optimum removal conditions: dosage of 1 g/L, pH level of pH 6, agitation speed of 150 rpm and contact time of 14h for adsorbing hydrogen sulfide with an initial concentration of 100-500 mg/L. In the current study, the Langmuir, Freundlich, Temkin, and Dubinin models are used to predict the adsorption isotherms. Our equilibrium data for hydrogen sulfide adsorption agrees well with those of the Langmuir equation. The maximum monolayer adsorption capacity is 150.07 mg/g. Moreover, the kinetics of H2S adsorption by using the modified calcite of eggshell follows a pseudo-second-order model. From the current work, we have found that the calcite eggshell is a suitable adsorbent for H2S embeded inside the waste water. Most importantly, chicken eggshell is a waste and vastly available; hence, it could serve as a practical mean for H2S adsorption

    Graphene: Electrochemical Production and its Energy Storage Properties

    Get PDF
    Graphene oxide was prepared by Hummersā€™ method and then electrochemically reduced to produce graphene nanosheets. Physicochemical characterizations were performed using XRD, FTIR, FESEM, TEM, Raman and UVā€“Vis techniques to elucidate the structure and morphology of the prepared material. The electrochemical studies had been conducted on graphene by cyclic voltammetry, galvanostatic chargeā€“discharge and impedance spectra measurements, indicating its superb energy storage properties. Cyclic voltammetry show rectangular voltammograms indicating ideal electrodouble layer performance. The specific capacitance of graphene was found to be 131 F g-1 at 0.1 A g-1. Impedance spectra showed low resistance of electrochemically produced graphene, supporting its suitability for energy storage applications, such as supercapacitor

    Magnetic Electrodeposition of the Hierarchical Cobalt Oxide Nanostructure from Spent Lithium-Ion Batteries: Its Application as a Supercapacitor Electrode

    Get PDF
    In this study, electrodeposition of cobalt oxide (Co3O4) from spent lithium-ion batteries is successfully enhanced by the magnetic field effect. In the presence of magnetic field, well-defined hierarchical Co3O4 nanostructures with higher electroactive surface area are formed during the electrodeposition process. Electrochemical analysis shows that the enhanced Co3O4 nanostructures exhibit excellent charge storage capabilities of 1273 F gā€“1 at 1 A gā€“1, approximately 4 times higher than the electrodeposited Co3O4 that is formed without magnetic field effect. It also reveals the high cycling stability of enhanced Co3O4 nanostructures, with 96% capacitance retention at 5000 charge discharge cycles. The results manifest the enhancement of Co3O4 recovery from spent lithium-ion batteries, which can be the potential electrode material for supercapacitor application

    History and Progress of Polymers for Energy Applications

    Get PDF
    Polymer materials have attracted the interest of researchers in recent years as electrode materials and electrolytes for a variety of energy applications such as supercapacitors, batteries, fuel cells, solar cells, and electrochromic devices. Over the last few decades, there has been a great deal of research into the potential applications of these materials. Conducting polymers, in particular, exhibit semiconductor-like properties, and they have emerged as fascinating materials for the fabrication of electronic devices. This chapter covers the history and progress of polymer materials in several energy applications divided into energy storage and energy conversion applications

    Cutting-edge development in dendritic polymeric materials for biomedical and energy applications

    Get PDF
    Dendritic polymers (dendrimers and hyperbranched polymers) are becoming increasingly popular due to their vast range of uses. Due to their distinctive and novel qualities, they have demonstrated a strong interest. Since its discovery, dendritic polymers have become a potential material for many research applications, ranging from biomedical and tissue engineering to catalytic and energy applications. Since then, dendritic polymers' unique features have become a promising platform for a variety of uses. Dendritic polymers have made great progress in overcoming basic and technological problems related to their biomedical and energy applications. This review summarizes the strategies of synthesizing dendrimers and hyperbranched polymers. Further, the review highlights the applications of dendrimers and hyperbranched polymers in many study fields such as drug delivery, gene delivery, tissue engineering, catalysis, and energy storage. This review concludes with future avenues to be explored for the applications of dendritic polymers

    One-step production of pyrene-1-boronic acid functionalized graphene for dopamine detection

    Get PDF
    A facile molecular wedging method is used to exfoliate graphite flakes into graphene sheets, with concurrent functionalization to form pyrene-1-boronic acid functionalized graphene (PBA/G). Different techniques are used to characterize the prepared materials such as field emission scanning electron microscope, energy dispersive X-ray analyzer, Raman, Fourier transformed infrared spectroscopy and fluorescence spectroscopy to evaluate their structural and morphological characteristics. The intercalation of PBA into graphite sheets, followed by exfoliation can be observed under the electron microscope. Elemental analyses show that the PBA acts more than intercalant, it is functionalized onto the graphene sheets upon exfoliation to form PBA/G. Raman analysis indicates PBA/G has a lower number of graphene layers as a result of successful exfoliation by PBA. Electrochemical impedance studies show that the PBA/G possesses high affinity for dopamine through the diol groups interaction, which renders it to have enhanced detection for dopamine
    • ā€¦
    corecore